Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Dedicated GTL Vehicle: A Calibration Optimization Study

2010-04-12
2010-01-0737
GTL (Gas-To-Liquid) fuel is well known to improve tailpipe emissions when fuelling a conventional diesel vehicle, that is, one optimized to conventional fuel. This investigation assesses the additional potential for GTL fuel in a GTL-dedicated vehicle. This potential for GTL fuel was quantified in an EU 4 6-cylinder serial production engine. In the first stage, a comparison of engine performance was made of GTL fuel against conventional diesel, using identical engine calibrations. Next, adaptations enabled the full potential of GTL fuel within a dedicated calibration to be assessed. For this stage, two optimization goals were investigated: - Minimization of NOx emissions and - Minimization of fuel consumption. For each optimization the boundary condition was that emissions should be within the EU5 level. An additional constraint on the latter strategy required noise levels to remain within the baseline reference.
Technical Paper

LPG and Prechamber as Enabler for Highly Performant and Efficient Combustion Processes Under Stoichiometric Conditions

2021-09-05
2021-24-0032
The European Union has defined legally binding CO2-fleet targets for new cars until 2030. Therefore, improvement of fuel economy and carbon dioxide emission reduction is becoming one of the most important issues for the car manufacturers. Today’s conventional car powertrain systems are reaching their technical limits and will not be able to meet future CO2 targets without further improvement in combustion efficiency, using low carbon fuels (LCF), and at least mild electrification. This paper demonstrates a highly efficient and performant combustion engine concept with a passive pre-chamber spark plug, operating at stoichiometric conditions and powered with liquefied petroleum gas (LPG). Even from fossil origin, LPG features many advantages such as low carbon/hydrogen ratio, low price and broad availability. In future, it can be produced from renewables and it is in liquid state under relatively low pressures, allowing the use of conventional injection and fuel supply components.
Journal Article

A Sectoral Approach to Modelling Wall Heat Transfer in Exhaust Ports and Manifolds for Turbocharged Gasoline Engines

2016-04-05
2016-01-0202
A new approach is presented to modelling wall heat transfer in the exhaust port and manifold within 1D gas exchange simulation to ensure a precise calculation of thermal exhaust enthalpy. One of the principal characteristics of this approach is the partition of the exhaust process in a blow-down and a push-out phase. In addition to the split in two phases, the exhaust system is divided into several sections to consider changes in heat transfer characteristics downstream the exhaust valves. Principally, the convective heat transfer is described by the characteristic numbers of Nusselt, Reynolds and Prandtl. However, the phase individual correlation coefficients are derived from 3D CFD investigations of the flow in the exhaust system combined with Low-Re turbulence modelling. Furthermore, heat losses on the valve and the seat ring surfaces are considered by an empirical model approach.
Journal Article

Experimental Analysis of the Impact of Injected Biofuels on In-Cylinder Flow Structures

2016-05-18
2016-01-9043
The interaction of biofuel sprays from an outward opening hollow cone injector and the flow field inside an internal combustion engine is analyzed by Mie-Scattering Imaging (MSI) and high-speed stereoscopic particle-image velocimetry (stereo-PIV). Two fuels (ethanol and methyl ethyl ketone (MEK)), four injection pressures (50, 100, 150, and 200 bar), three starting points of injection (60°, 277°, and 297° atdc), and two engine speeds (1,500 rpm and 2,000 rpm) define the parameter space of the experiments. The MSI measurements determine the vertical penetration length and the spray cone angle of the ethanol and MEK spray. Stereo-PIV is used to investigate the interaction of the flow field and the ethanol spray after the injection process for a start of injection at 60° atdc. These measurements are compared to stereo-PIV measurements without fuel injection performed in the same engine [19].
Journal Article

Two-Stage Ignition Occurrence in the End Gas and Modeling Its Influence on Engine Knock

2017-09-04
2017-24-0001
The most significant operation limit prohibiting the further reduction of the CO2 emissions of gasoline engines is the occurrence of knock. Thus, being able to predict the incidence of this phenomenon is of vital importance for the engine process simulation - a tool widely used in the engine development. Common knock models in the 0D/1D simulation are based on the calculation of a pre-reaction state of the unburnt mixture (also called knock integral), which is a simplified approach for modeling the progress of the chemical reactions in the end gas where knock occurs. Simulations of thousands of knocking single working cycles with a model representing the Entrainment model’s unburnt zone were performed using a detailed chemical reaction mechanism. The investigations showed that, at specific boundary conditions, the auto-ignition of the unburnt mixture resulting in knock happens in two stages.
Technical Paper

Potential Analysis and Virtual Development of SI Engines Operated with Synthetic Fuel DMC+

2020-04-14
2020-01-0342
On the way to emission-free mobility, future fuels must be CO2 neutral. To achieve this, synthetic fuels are being developed. In order to better assess the effects of the new fuels on the engine process, simulation models are being developed that reproduce the chemical and physical properties of these fuels. In this paper, the fuel DMC+ is examined. DMC+ (a mixture of dimethyl carbonate (DMC) and methyl formate (MeFo) mainly, characterized by the lack of C-C Bonds and high oxygen content) offers advantages with regard to evaporation heat, demand of oxygen and knock resistance. Furthermore, its combustion is almost particle free. With the aid of modern 0D/1D simulation methods, an assessment of the potential of DMC+ can be made. It is shown that the simulative conversion of a state-of-the-art gasoline engine to DMC+ fuel offers advantages in terms of efficiency in many operating points even if the engine design is not altered.
Technical Paper

A Quasi-Dimensional SI Burn Rate Model for Predicting the Effects of Changing Fuel, Air-Fuel-Ratio, EGR and Water Injection

2020-04-14
2020-01-0574
As a result of the R&D focus being shifted from internal combustion engines to electrified powertrains, resources for the development of internal combustion engines are restricted more and more. With that, the importance of highly efficient engine development tools is increased. In this context, 0D/1D engine simulation offers the advantage of low computational effort and fast engine model set-up. To ensure a high predictive ability of the engine simulation, a reliable burn rate model is needed. Considering the increasing interest in alternative fuels, the aspect of predicting the fuel influence on combustion is of special importance. To reach these targets, the change of engine combustion characteristics with changing fuels and changing air-fuel-ratios were investigated systematically in a first step. For this purpose, engine test bed data were compared with expected fuel-dependent flame wrinkling trends based on Markstein/Lewis number theory.
Journal Article

Virtual 48 V Mild Hybridization: Efficient Validation by Engine-in-the-Loop

2018-04-03
2018-01-0410
New 12 V/48 V power net architectures are potential solutions to close the gap between customer needs and legislative requirements. In order to exploit their potential, an increased effort is needed for functional implementation and hardware integration. Shifting of development tasks to earlier phases (frontloading) is a promising solution to streamline the development process and to increase the maturity level at early stages. This study shows the potential of the frontloading of development tasks by implementing a virtual 48 V mild hybridization in an engine-in-the-loop (EiL) setup. Advanced simulation technics like functional mock-up interface- (FMI) based co-simulation are utilized for the seamless integration of the real-time (RT) simulation models and allow a modular simulation framework as well as a decrease in development time.
Journal Article

Tomorrows Diesel Fuel Diversity - Challenges and Solutions

2008-06-23
2008-01-1731
Regulated emissions, CO2-values, comfort, good driveability, high reliability and costs, this is the main frame for all future powertrain developments. In this frame, the diesel powertrain, not only for passenger cars, but also for commercial vehicle applications, faces some challenges in order to fulfil the future European and current US emission legislations while keeping the fuel consumption benefit, good driveability and an acceptable cost frame. One of these challenges is the varying fuel qualities of diesel fuel in different countries including different cetane number, volatility, sulphur content and different molecular composition. In addition to that in the future, more and more alternative fuels with various fuel qualities and properties will be launched into the market for economical and environmental reasons. At present, the control algorithms of the injection system applied in most diesel engines is open loop control.
Journal Article

Coking Phenomena in Nozzle Orifices of Dl-Diesel Engines

2009-04-20
2009-01-0837
Within a public founded project test cell investigations were undertaken to identify parameters which predominantly influence the development of critical deposits in injection nozzles. A medium-duty diesel engine was operated in two different coking cycles with a zinc-free lubricant. One of the cycles is dominated by rated power, while the second includes a wide area of the operation range. During the experiments the temperatures at the nozzle tip, the geometries of the nozzle orifice and fuel properties were varied. For a detailed analysis of the deposits methods of electron microscopy were deployed. In the course of the project optical access to all areas in the nozzle was achieved. The experiments were evaluated by means of the monitoring of power output and fuel flow at rated power. The usage of a SEM (scanning electron microscope) and a TEM (transmission electron microscope) revealed images of the deposits with a magnification of up to 160 000.
Journal Article

Quantitative Fuel-Air-Mixing Measurements in Diesel-Like Sprays Emanating from Convergent and Divergent Multi-Layer Nozzles

2012-04-16
2012-01-0464
It is the objective of this work to characterize mixture formation in the sprays emanating from Multi-Layer (ML) nozzles under approximately engine-like conditions by quantitative, spatially, and temporally resolved fuel-air ratio and temperature measurements. ML nozzles are cluster nozzles which have more than one circle of orifices. They were introduced previously, in order to overcome the limitations of conventional nozzles. In particular, the ML design yields the potential of variable spray interaction, so that mixture formation could be controlled according to the operating condition. In general, it was also a primary aim of the cluster-nozzle concepts to combine the enhanced atomization and pre-mixing of small nozzle holes with the longer spray penetration lengths of large holes. The applied diagnostic, which is based on 1d spontaneous Raman scattering, yields the quantitative stoichiometric ratio and the temperature in the vapor phase.
Journal Article

A New Approach for Modeling Cycle-to-Cycle Variations within the Framework of a Real Working-Process Simulation

2013-04-08
2013-01-1315
For a reliable and accurate simulation of SI engines reproduction of their operation limits (misfiring and knock limit) and in this context the knowledge of cyclic combustion variations and their influence on knock simulation are mandatory. For this purpose in this paper a real working-process simulation approach for the ability to predict cycle-to-cycle variations (ccv) of gasoline engines is proposed. An extensive measurement data base of four different test engines applying various operation strategies was provided in order to gain a better understanding of the physical background of the cyclic variations. So the ccv initiated by dilution strategies (internal EGR, lean operation), the ccv at full load and at the knock limit could be investigated in detail. Finally, the model was validated on the basis of three further engines which were not part of the actual development process.
Journal Article

Numerical Investigation of Direct Gas Injection in an Optical Internal Combustion Engine

2018-04-03
2018-01-0171
Direct injection (DI) of compressed natural gas (CNG) is a promising technology to increase the indicated thermal efficiency of internal combustion engines (ICE) while reducing exhaust emissions and using a relatively low-cost fuel. However, design and analysis of DI-CNG engines are challenging because supersonic gas jet emerging from the DI injector results in a very complex in-cylinder flow field containing shocks and discontinuities affecting the fuel-air mixing. In this article, numerical simulations are used supported by validation to investigate the direct gas injection and its influence on the flow field and mixing in an optically accessible ICE. The simulation approach involves computation of the in-nozzle flow with highly accurate Large-Eddy Simulations, which are then used to obtain a mapped boundary condition. The boundary condition is applied in Unsteady Reynolds Averaged Navier-Stokes simulations of the engine to investigate the in-cylinder velocity and mixing fields.
Journal Article

Assessment of the Full Thermodynamic Potential of C8-Oxygenates for Clean Diesel Combustion

2017-09-04
2017-24-0118
Within the Cluster of Excellence “Tailor-Made Fuels from Biomass” (TMFB) at the RWTH Aachen University, two novel biogenic fuels, namely 1-octanol and its isomer dibutyl ether (DBE), were identified and extensively analyzed in respect of their suitability for combustion in a Diesel engine. Both biofuels feature very different properties, especially regarding their ignitability. In previous works of the research cluster, promising synthesis routes with excellent yields for both fuels were found, using lignocellulosic biomass as source material. Both fuels were investigated as pure components in optical and thermodynamic single cylinder engines (SCE). For 1-octanol at lower part load, almost no soot emission could be measured, while with DBE the soot emissions were only about a quarter of that with conventional Diesel fuel. At high part load (2400 min-1, 14.8 bar IMEP), the soot reduction of 1-octanol was more than 50% and for DBE more than 80 % respectively.
Journal Article

Effects of Cavitation and Hydraulic Flip in 3-Hole GDI Injectors

2017-03-28
2017-01-0848
The performance of Gasoline Direct Injection (GDI) engines is governed by multiple physical processes such as the internal nozzle flow and the mixing of the liquid stream with the gaseous ambient environment. A detailed knowledge of these processes even for complex injectors is very important for improving the design and performance of combustion engines all the way to pollutant formation and emissions. However, many processes are still not completely understood, which is partly caused by their restricted experimental accessibility. Thus, high-fidelity simulations can be helpful to obtain further understanding of GDI injectors. In this work, advanced simulation and experimental methods are combined in order to study the spray characteristics of two different 3-hole GDI injectors.
Journal Article

Optimization of Diesel Combustion and Emissions with Tailor-Made Fuels from Biomass

2013-09-08
2013-24-0059
In order to thoroughly investigate and improve the path from biofuel production to combustion, the Cluster of Excellence “Tailor-Made Fuels from Biomass” was installed at RWTH Aachen University in 2007. Since then, a variety of fuel candidates have been investigated. In particular, 2-methyl tetrahydrofurane (2-MTHF) has shown excellent performance w.r.t. the particulate (PM) / NOx trade-off [1]. Unfortunately, the long ignition delay results in increased HC-, CO- and noise emissions. To overcome this problem, the addition of di-n-butylether (DNBE, CN ∼ 100) to 2-MTHF was analyzed. By blending these two in different volumetric shares, the effects of the different mixture formation and combustion characteristics, especially on the HC-, CO- and noise emissions, have been carefully analyzed. In addition, the overall emission performance has been compared to EN590 diesel.
Journal Article

Characterization of Hollow Cone Gas Jets in the Context of Direct Gas Injection in Internal Combustion Engines

2018-04-03
2018-01-0296
Direct injection (DI) compressed natural gas (CNG) engines are emerging as a promising technology for highly efficient and low-emission engines. However, the design of DI systems for compressible gas is challenging due to supersonic flows and the occurrence of shocks. An outwardly opening poppet-type valve design is widely used for DI-CNG. The formation of a hollow cone gas jet resulting from this configuration, its subsequent collapse, and mixing is challenging to characterize using experimental methods. Therefore, numerical simulations can be helpful to understand the process and later to develop models for engine simulations. In this article, the results of high-fidelity large-eddy simulation (LES) of a stand-alone injector are discussed to understand the evolution of the hollow cone gas jet better.
Journal Article

New FKFS Technology at the Full-Scale Aeroacoustic Wind Tunnel of University of Stuttgart

2015-04-14
2015-01-1557
For many years FKFS has operated the full-scale aeroacoustic wind tunnel of University of Stuttgart. To keep this wind tunnel as one of the most modern ones of its kind, it has again been upgraded significantly. The upgrade improved the aerodynamic as well as the aeroacoustic performance and accelerated the operational processes. Additionally, new innovative features have significantly enlarged the test capabilities. A new patented, modular belt system (FKFS first®) allows high performance measurements for race cars in a 3-belt mode as well as efficient measurements for production vehicle development in a 5-belt mode. The belt system is accompanied by a new, larger turntable and a new under-floor balance which enables high-accuracy measurements of forces and moments also for a high resolution in time. For the elimination of parasitic forces generated at the wheel drive units, a specific correction procedure has been implemented, which is patented, too (FKFS pace®).
Journal Article

Influence of Binary CNG Substitute Composition on the Prediction of Burn Rate, Engine Knock and Cycle-to-Cycle Variations

2017-03-28
2017-01-0518
Since 0D/1D-simulations of natural gas spark ignition engines use model theories similar to gasoline engines, the impact of changing fuel characteristics needs to be taken into consideration in order to obtain results of higher quality. For this goal, this paper proposes some approaches that consider the influence of binary fuel mixtures such as methane with up to 40 mol-% of ethane, propane, n-butane or hydrogen on laminar flame speed and knock behavior. To quantify these influences, reaction kinetics calculations are carried out in a wide range of the engine operation conditions. Obtained results are used to update and extend existing sub-models. The model quality is validated by comparing measured burn rates with simulation results. The benefit of the new sub-models are utilized by predicting the influence the fuel takes on engine operating limits in terms of knocking and lean misfire limits, the latter being determined by using a cycle-to-cycle variation model.
Technical Paper

Integrating Body-In-White Influences on Vehicle Dynamics into Real-Time Models

2021-09-10
2021-01-5085
Elastokinematic parameters of the axle stiffness are one of the important effects for vehicle dynamics, which are usually considered in full-vehicle real-time models. In order to integrate such effects into real-time models, a multibody axle model is placed on the suspension test rig and is clamped at mounting points. Statically defined load cases are applied on the wheel, and finally, lookup tables are generated, which represent the elastokinematics for the real-time environment. In this case, the Body-In-White (BIW) is considered to be ideally stiff. However, the elasticity of BIW significantly influences the elastokinematics behavior as well and should be integrated into real-time models. The present paper introduces an efficient approach to integrate the BIW compliance effects into lookup tables in addition to the suspension stiffness under consideration of the Elastokinematics By Inertia Force method (EBIF method).
X