Refine Your Search

Topic

Affiliation

Search Results

Journal Article

Prediction of Life Distribution and Design Robustness of Converter Joint Durability Using CAE Techniques

2014-04-01
2014-01-0916
A variety of parameters influence the durability of a converter to pipe joint of an automotive exhaust system. Some of the parameters are design variables and some factors are related to manufacturing. The design parameters include the thickness of the components, diameter of the pipe, sleeve length of the cone etc. While the variables like the weld penetration and the fit-up of the joint are related to manufacturing. Traditional durability simulations utilizing computer aided engineering (CAE) methods are conducted using nominal values of the design and manufacturing variables. In reality scatter and randomness in parameters are present due to the tolerance in components and limitations of the manufacturing process. In this paper a CAE based stochastic approach to determine the life distribution for a converter joint of an automotive exhaust system is presented.
Technical Paper

Comparative Research on Emission Characteristic and Combustion Characteristic of Gasoline Direct Injection and Port Fuel Injection for Free-Piston Linear Generator

2020-09-15
2020-01-2220
As a new type of energy, free-piston linear generator (FPLG) attracts more research on its stable operation and power performance, while less on its combustion and emission performance. So, in this paper, the emission characteristics of FPLG in two different modes are studied through a port fuel injection (PFI) mode which was verified by the experiment and a gasoline direct injection (GDI) mode. The results showed that: both the GDI mode and the PFI mode produced large amounts of nitrogen oxide (NOx) during the working process. But the GDI mode produced before the PFI mode and it produced nearly 2 times than the PFI mode. However, the formation rate of NOx in GDI mode is much lower than that in PFI mode. Meanwhile, in both modes, 90% of NOX was generated in the cylinder at the temperature higher than 1750K, and only about 10% of NOX was generated at a temperature lower than 1750K.
Technical Paper

Investigation on the Deformation of Injector Components and Its Influence on the Injection Process

2020-04-14
2020-01-1398
The deformation of injector components cannot be disregarded as the pressure of the system increases. Deformation directly affects the characteristics of needle movement and injection quantity. In this study, structural deformation of the nozzle, the needle and the control plunger under different pressures is calculated by a simulation model. The value of the deformation of injector components is calculated and the maximum deformation location is also determined. Furthermore, the calculated results indicates that the deformation of the control plunger increases the control chamber volume and the cross-section area between the needle and the needle seat. A MATLAB model is established to The influence of structural deformation on needle movement characteristics and injection quantity is investigate by a numerical model. The results show that the characteristic points of needle movement are delayed and injection quantity increases due to the deformation.
Journal Article

Fuzzy-PID Speed Control of Diesel Engine Based on Load Estimation

2015-04-14
2015-01-1627
In order to improve the anti-disturbance performance of engine-load and the effect on speed control for the diesel engine, the paper presents the fuzzy-PID speed control strategy in the architecture of torque-based control. The engine-load estimation algorithm is designed based on the mean-value-model and crankshaft dynamics model, and the estimation precision is validated by engine test in both steady and dynamic conditions. Through the experiment verification of the diesel engine, the fuzzy-PID control strategy based on load estimation can significantly improve the anti-disturbance performance of engine-load in the speed control.
Journal Article

A Semi-Detailed Chemical Kinetic Mechanism of Acetone-Butanol-Ethanol (ABE) and Diesel Blends for Combustion Simulations

2016-04-05
2016-01-0583
With the development of advanced ABE fermentation technology, the volumetric percentage of acetone, butanol and ethanol in the bio-solvents can be precisely controlled. To seek for an optimized volumetric ratio for ABE-diesel blends, the previous work in our team has experimentally investigated and analyzed the combustion features of ABE-diesel blends with different volumetric ratio (A: B: E: 6:3:1; 3:6:1; 0:10:0, vol. %) in a constant volume chamber. It was found that an increased amount of acetone would lead to a significant advancement of combustion phasing whereas butanol would compensate the advancing effect. Both spray dynamic and chemistry reaction dynamic are of great importance in explaining the unique combustion characteristic of ABE-diesel blend. In this study, a semi-detailed chemical mechanism is constructed and used to model ABE-diesel spray combustion in a constant volume chamber.
Technical Paper

Numerical Simulation and Optimization for Combustion of an Opposed Piston Two-Stroke Engine for Unmanned Aerial Vehicle (UAV)

2020-04-14
2020-01-0782
An opposed piston two-stroke engine is more suitable for use in an unmanned aerial vehicle because of its small size, excellent self-balancing, stable operation, and low noise. Consequently, in this study, based on experimental data for a prototype opposed piston two-stroke engine, numerical simulation models were established using GT-POWER for 1D simulation and AVL-FIRE for 3D CFD simulation. The mesh grid and solver parameters for the numerical model of the CFD simulation were determined to guarantee the accuracy of the numerical simulation, before studying and optimizing the ventilation efficiency of the engine with different dip angles. Furthermore, the fuel spray and combustion were analyzed and optimized in details.
Technical Paper

Experimental and Kinetic Investigation of Pressure and Temperature Effects on Burning Characteristics of n-Heptane/Air/Hydrogen up to Near Lean Burn Limits

2020-04-14
2020-01-0343
Incomplete-combustion and misfire are the hurdles in internal combustion engines to run on ultra-lean mixture, whereas high thermal efficiency has been achieved at lean mixture. The burning characteristics of n-heptane with 0% and 30% hydrogen additions were studied at 393K-453K and 100kPa-300kPa up to near lean burn limits, λ=0.8-2.0. The flame appeared in spherical shape only by 37-mJ ignition energy (IE) at λ=0.8-1.5, while further lean mixture, ≥1.6, could be ignited only by 3000-mJ with the distorted flame shape. The flame buoyed in the mixture when burning velocity calculated by kinetic mechanism was equal or less than 19.83 cm/s at the initial conditions of λ=1.8, 393K and 100kPa. The thermal instability under impact of initial pressure and temperature was higher at lean mixture than at stoichiometric mixture.
Technical Paper

Controlling Strategy for the Performance and NOx Emissions of the Hydrogen Internal Combustion Engines with a Turbocharger

2020-04-14
2020-01-0256
Hydrogen fuel is a future energy to solve the problems of energy crisis and environmental pollution. Hydrogen internal combustion engines can combine the advantage of hydrogen without carbon pollution and the main basic structure of the traditional engines. However, the power of the port fuel injection hydrogen engines is smaller than the same volume gasoline engine because the hydrogen occupies the volume of the cylinder and reduces the air mass flow. The turbocharger can increase the power of hydrogen engines but also increase the NOx emission. Hence, a comprehensive controlling strategy to solve the contradiction of the power, BTE and NOx emission is important to improve the performance of hydrogen engines. This paper shows the controlling strategy for a four-stroke, 2.3L hydrogen engine with a turbocharger. The controlling strategy divides the operating conditions of the hydrogen engine into six parts according to the engine speeds and loads.
Journal Article

The Effect of Phase Difference between Inputs on Insertion Loss for a Two-Inlet Muffler

2015-06-15
2015-01-2305
A recently developed superposition approach for determining the insertion loss of a two-inlet muffler is reviewed. To validate the approach, calculated and measured insertion losses are compared for a small engine muffler with two inlets and one outlet. After which, the phasing between the two inputs is varied and the insertion loss is evaluated. Results show that the insertion loss is strongly affected by the phasing between sources at low frequencies while phasing between sources has a lesser impact at high frequencies. At the conclusion of the paper, the theory for applying the superposition approach to transmission loss is reviewed.
Journal Article

Study on Hydrodynamic Torque Converter Parameter Integrated Optimization Design System Based on Tri-Dimensional Flow Field Theory

2008-06-23
2008-01-1525
Hydrodynamic torque converter parameter integrated optimization design system is established based on tri-dimensional flow field theory. Design segments such as optimization initial values searching by meanline theory, cascade solid modeling, structure mesh of flow passage, CFD(computational fluid dynamics), DOE(design of experiment), RSM(response surface model)and optimization algorithm are integrated in this system and therefore a three dimensional optimization design method for hydrodynamic torque converter is presented and realized. An optimization design instance is accomplished by workstation computer cluster, and its result shows that speed and accuracy of design are improved and design system based on 3D flow field theory is accurate and effective.
Journal Article

Numerical Optimization on a Centrifugal Turbocharger Compressor

2008-06-23
2008-01-1697
Performances of a centrifugal turbocharger compressor are investigated and validated in this paper. Based on the validation results, numerical optimizations are performed using ANN and CFD methods. Different impeller geometry with free parameters controlling stacking laws, end-wall, blade sectional camber curves and corresponding performances are used as input layer of ANN in the optimization, while adiabatic total-to-total efficiency and total pressure ratio are used as output layer of the optimization cycle. With this method, the performances of the compressor investigated in this paper are improved notably.
Journal Article

Waste Heat Energy Harvesting for Improving Vehicle Efficiency

2011-04-12
2011-01-1167
Currently, in the typical internal combustion engine, approximately one third of fossil fuel combustion by-product is wasted heat. In the continued effort to improve fuel economy, one area that is being researched today is the harvesting of wasted energy to increase vehicle efficiency. This paper will address how heat emitted by exhaust systems can be captured and used to increase vehicle efficiency. Overall we will compare energy content in the exhaust manifold and exhaust underfloor mid-vehicle position, where potential exhaust heat exchanger concepts can reside. These heat exchanger concepts are designed primarily to capture heat from these locations and transfer the energy for increased passenger heating and comfort during cold conditions and/or supplement other improvements in power train efficiencies. An analysis of the energy exchange to the heated fluid is compared in the exhaust manifold and underfloor position respectively.
Journal Article

Advanced Computational Aero-Acoustic Simulation of Complex Automotive Exhaust Systems

2011-04-12
2011-01-0503
In the automotive sector, the time to market has become increasingly important. Consequently, powertrain systems require specific exhaust systems solutions to meet engine performance, pollutant emissions and acoustic targets delivered in a shorten time period. In this context, exhaust system suppliers need to constantly update their development process and according to project demands, tail-pipe noise has to be managed with advanced tools and methodologies. Flow generated noise has a broad band character and depending on the product design, some tonal frequencies could appear and produce a whistling noise. In order to anticipate and solve all these sound quality problems, an innovative computational aeroacoustic methodology has been developed and validated for a large range of exhaust system products.
Journal Article

Mobility at the Development of Exhaust System

2011-05-17
2011-01-1523
This document describes the advantages of using Mobility transfer function simulations during the development of exhaust systems. The automotive industry demands increasingly stringent levels of acceptable interior noise. The exhaust system is an important contributor to the total vehicle noise and vibration and thus is a target for noise reduction. The use of good vibration isolation systems makes it possible to decrease noise in the vehicle interior compartment. In other words, the vibratory motion in automotive structures results in tactile and acoustic responses. This occurs when the energy coming from the engine (source) is transferred by the Exhaust System (path) and then is transformed into Structural Borne Noise received by the Driver (receiver) through the hanging arrangement of the Exhaust System.
Journal Article

Combustion and Emission Characteristics of a Heavy-Duty Diesel Engine at Idle at Various Altitudes

2013-04-08
2013-01-1516
This present paper described an experimental study on the combustion and emission characteristics of a diesel engine at idle at different altitudes. Five altitudes ranging from 550m to up to 4500m were investigated. Combustion parameters including in-cylinder pressure and temperature, heat release, fuel mass burning and so forth, together with emission factors including CO, HC, NOx and PM were tested and analyzed. The result of on-board measurement manifested that in-cylinder pressure descended consistently with the rising of altitude, while both the maximum in-cylinder temperature and exhaust temperature ascended with the altitude. It was found that ignition delay was lengthened at higher altitude, but the combustion duration became shorter. The crank angle towards 90% fuel burnt has hardly changed with the variation of altitude. As for heat release, the difference of slopes observed at different altitudes was quite slight.
Technical Paper

Studies on Anti-Slip Regulation Technologies for AMT Vehicles

2007-04-16
2007-01-1314
In order to improve the tractive ability, steering capability and directional stability, etc. of automated mechanical transmission (AMT) vehicles running on the wet and slippery road, the anti-slip regulation (ASR) technologies for AMT vehicles are developed. The significance of ASR for AMT vehicles is introduced; a road friction recognition method based on the deceleration of driving wheels is investigated; a fuzzy anti-slip control system based on adjustment of engine torque is developed and the corresponding experimental verification is conducted. The experimental results denote that the proposed method is effective to eliminate the excessive slip when the AMT vehicle travels on the low friction road.
Technical Paper

A Study of Calibration of Electronic-controlled Injector Employed in High Pressure Common Rail System

2008-06-23
2008-01-1742
In order to meet the need of high pressure common rail diesel engine, calibration for injection quantity and basic MAP of electronic-controlled injector are made. Combining with testing data, influencing factors for consistency and identity of injecting fuel in electronic-controlled injector are analyzed, in the condition of small quantity, controlled-pressure undulation quantity and injecting pulse revising are presented to achieve the respective demand. Primary basic map for common rail pressure and injecting fuel are fixed with alterable step method, and calibration of fuel quantity MAP is made on bench test. Finally test of electronic-controlled injector equipped in diesel engine is finished, testing result showed that calibration process and method are reasonable.
Technical Paper

Research on Control Strategy of Shifting Progress

2008-06-23
2008-01-1684
Based on BF6M1015CP electronic diesel engine (it is a supercharged, water-cooled engine. It has 6 cylinders and it is for heavy-duty vehicle) and HD4070PR electronic automatic transmission (it covers heavy-duty applications requiring high input horsepower and torque. It contains torque converter module, control module, planetary module and output module. It has 7 forward gears and a power-take -off (PTO) and a retarder), the paper analyzes the shift system of an electronic automatic transmission and sets up a mathematic module of the shifting process. With the model the shifting process is analyzed and the model can be used directly in shifting process control, and the rules of shifting process can be derived. To improve the shift quality, in the paper the different control methods in different phases are used and reviewed that Include the open-loop control, fixed ramp rate, and closed-loop control.
Technical Paper

One-dimensional Simulation Study on the Rule of Several-parameter Matching for the Performance of a Turbocharged Diesel Engine

2008-06-23
2008-01-1696
One-dimensional combustion performance of a turbocharged V-type eight-cylinder diesel engine was computed by used of WAVE code. The parameters of compress ratio, intake temperature, intake pressure, fuel injection quantity, advance angle of injection, fuel injection rate and fuel injection duration were changed so as to study quantificationally how these parameters affect the power, fuel consume, the max combustion pressure, exhaust temperature and emission of the diesel engine. The computational results could help to accomplish the preliminary optimization of several parameters for combustion matching and supplement experimental experience and exploit new products.
Technical Paper

Design and Development of a Real-time Dynamic AMT Test Bench for Simulating Total Road Forces of Vehicle

2008-06-23
2008-01-1682
In this paper the hardware and software of a real-time dynamic test bench for simulating the total road forces of vehicles fitted with Automated Manual Transmissions (AMT) is described. First, the purpose and meaning of this research are discussed. And then, we select the hardware components of the test bench system according to the application requirements and complete the system design. Statement of the structure, working principle and function of the system is also included in this part. According to the experimental procedure of simulating total road load forces of vehicle under real-time conditions on the dynamic test bench, the software system is designed using Visual C++ 6.0, CAN bus communication protocol, RS-232, and network technology. Finally, some experimental tests for the system are carried out with the results that this design corresponds to the real-time dynamic requirements.
X