Refine Your Search

Topic

Author

Search Results

Technical Paper

21SIAT-0638 - Fleet Analytics - A Data-Driven and Synergetic Fleet Validation Approach

2021-09-22
2021-26-0499
Current developments in automotive industry such as hybrid powertrains and the continuously increasing demands on emission control systems, are pushing complexity still further. Validation of such systems lead to a huge amount of test cases and hence extreme testing efforts on the road. At the same time the pressure to reduce costs and minimize development time is creating challenging boundaries on development teams. Therefore, it is of utmost importance to utilize testing and validation prototypes in the most efficient way. It is necessary to apply high levels of instrumentation and collect as much data as possible. And a streamlined data pipeline allows the fleet managers to get new insights from the raw data and control the validation vehicles as well as the development team in the most efficient way. In this paper we will demonstrate a data-driven approach for validation testing.
Journal Article

Modeling of Catalyzed Particulate Filters - Concept Phase Simulation and Real-Time Plant Modeling on HiL

2016-04-05
2016-01-0969
The present work introduces an extended particulate filter model focusing on capabilities to cover catalytic and surface storage reactions and to serve as a virtual multi-functional reactor/separator. The model can be classified as a transient, non-isothermal 1D+1D two-channel model. The applied modeling framework offers the required modeling depth to investigate arbitrary catalytic reaction schemes and it follows the computational requirement of running in real-time. The trade-off between model complexity and computational speed is scalable. The model is validated with the help of an analytically solved reference and the model parametrization is demonstrated by simulating experimentally given temperatures of a heat-up measurement. The detailed 1D+1D model is demonstrated in a concept study comparing the impact of different spatial washcoat distributions.
Journal Article

Particulate Matter Classification in Filtration and Regeneration-Plant Modeling for SiL and HiL Environment

2017-03-28
2017-01-0970
The present work describes an existing transient, non-isothermal 1D+1D particulate filter model to capture the impact of different types of particulate matter (PM) on filtration and regeneration. PM classes of arbitrary characteristics (size, composition etc.) are transported and filtered following standard mechanisms. PM deposit populations of arbitrary composition and contact states are used to describe regeneration on a micro-kinetical level. The transport class and deposit population are linked by introducing a splitting deposit matrix. Filtration and regeneration modes are compared to experimental data from literature and a brief numerical assessment on the filtration model is performed. The filter model as part of an exhaust line is used in a concept study on different coating variants. The same exhaust line model is connected to an engine thermodynamic and vehicle model. This system model is run through a random drive cycle in office simulation.
Journal Article

Multi-Dimensional Modeling of the Soot Deposition Mechanism in Diesel Particulate Filters

2008-04-14
2008-01-0444
A computational, three-dimensional approach to investigate the behavior of diesel soot particles in the micro-channels of wall-flow Diesel Particulate Filters is presented. The KIVA3V CFD code, already extended to solve the 2D conservation equations for porous media materials [1], has been enhanced to solve in 2-D and 3-D the governing equations for reacting and compressible flows through porous media in non axes-symmetric geometries. With respect to previous work [1], a different mathematical approach has been followed in the implementation of the numerical solver for porous media, in order to achieve a faster convergency as source terms were added to the governing equations. The Darcy pressure drop has been included in the Navier-Stokes equations and the energy equation has been extended to account for the thermal exchange between the gas flow and the porous wall.
Journal Article

The 3Dcell Approach for the Acoustic Modeling of After-Treatment Devices

2011-09-11
2011-24-0215
In the last decades the continuously tightening limitations on pollutant emissions has led to an extensive adoption of after-treatment devices on the exhaust systems of modern internal combustion engines. While these devices are primarily introduced for reducing and controlling the emissions, they also play an important role influencing the wave motion inside the exhaust system and so affecting the acoustics and the performances of the engine. In this paper a novel approach is proposed for the modeling of two after-treatment devices: the catalyst and the Diesel Particulate Filter. The models are based on a fast quasi-3D approach, named 3Dcell, originally developed by the authors for the acoustic modeling of silencers. This approach allows to model the wave motion by solving the momentum equation along the three directions.
Journal Article

Improving the Simulation of the Acoustic Performance of Complex Silencers for ICE by a Multi-Dimensional Non-Linear Approach

2012-04-16
2012-01-0828
In this paper a three-dimensional time-domain CFD approach has been employed to predict and analyze the acoustic attenuation performance of complex perforated muffler geometries, where strong 3D effects limit the validity of the use of one-dimensional models. A pressure pulse has been imposed at the inlet to excite the wave motion, while unsteady flow computation have been performed to acquire the time histories of the pressures upstream and downstream of the silencer. Pressures in the time domain have been then transformed to acoustic pressures in the frequency domain, to predict the transmission loss.
Journal Article

Measures to Reduce Particulate Emissions from Gasoline DI engines

2011-04-12
2011-01-1219
Particulate emission reduction has long been a challenge for diesel engines as the diesel diffusion combustion process can generate high levels of soot which is one of the main constituents of particulate matter. Gasoline engines use a pre-mixed combustion process which produces negligible levels of soot, so particulate emissions have not been an issue for gasoline engines, particularly with modern port fuel injected (PFI) engines which provide excellent mixture quality. Future European and US emissions standards will include more stringent particulate limits for gasoline engines to protect against increases in airborne particulate levels due to the more widespread use of gasoline direct injection (GDI). While GDI engines are typically more efficient than PFI engines, they emit higher particulate levels, but still meet the current particulate standards.
Journal Article

Indoor/Outdoor Testing of a Passenger Car Suspension for Vibration and Harshness Analysis

2012-04-16
2012-01-0765
This paper presents a validation method for indoor testing of a passenger car suspension. A study was done to design a supporting modular structure with comparable inertances with respect to a vehicle's actual suspension and body connection points. For the indoor test, the rear axle is positioned on a rotating drum. The suspension system is excited as the wheel passes over cleats fixed on the drum and transient wheel motions are recorded. The indoor test rig outputs (i.e., wheel and chassis accelerations) were compared with experimental data measured on an actual vehicle running at different speeds on the same set of cleats along a flat road. The comparison results validate the indoor testing method. The forces and moments acting at each suspension and chassis connection point were measured with a set of patented six-axis load cells. The forces, moments, wheel and subframe accelerations were measured up to 120 Hz.
Technical Paper

Development of a Multi-Dimensional Parallel Solver for Full-Scale DPF Modeling in OpenFOAM®

2009-06-15
2009-01-1965
A new fast and efficient parallel numerical solver for reacting and compressible flows through porous media has been developed in the OpenFOAM® (Open Field Operation and Manipulation) CFD Toolbox. With respect to the macroscopic model for porous media originally available in OpenFOAM®, a different mathematical approach has been followed: the new implemented solver makes use of the physical normal components resulting from the velocity expansion in the unit orthogonal vector basis to compute the Darcy pressure drop across the porous medium. Also, an additional sink term to account for the increased flow friction over the porous wall has been included into the momentum equation. In the new solver, the pressure correction equation is still able to achieve a faster convergency at very low permeability of the medium, also when it is associated with grid non-orthogonality.
Technical Paper

A Modeling Study of Soot and De-NOx Reaction Phenomena in SCRF Systems

2011-06-09
2011-37-0031
The development of thermally durable zeolite NH3/Urea-SCR formulations coupled with that of high porosity filters substrates has opened the way to integrate PM and NOx control into a single device, namely an SCR-coated Diesel Particulate Filter (SCRF). A few experimental works are already present in the literature regarding SCRF systems, mainly addressing the DeNOx performances of the system (in both presence and absence of soot) under both steady state and transient conditions. The purpose of the present work is to perform a simulation study focused on phenomena which are expected to play key roles in SCRF systems, such as coupling of reaction and diffusion phenomena, soot effect on DeNOx activity, SCR coating effect on soot regeneration and filtration efficiency and competition between soot oxidation and DeNOx processes involving NO2.
Technical Paper

Cylinder- and Cycle Resolved Particle Formation Evaluation to Support GDI Engine Development for Euro 6 Targets

2011-09-11
2011-24-0206
Combustion of premixed stoichiometric charge is free of soot particle formation. Consequently, the development of direct injection (DI) spark ignition (SI) engines aims at providing premixed charge to avoid or minimize soot formation in order to meet particle emissions targets. Engine development methods not only need precise engine-out particle measurement instrumentation but also sensors and measurement techniques which enable identification of in-cylinder soot formation sources under all relevant engine test conditions. Such identification is made possible by recording flame radiation signals and with analysis of such signals for premixed and diffusion flame signatures. This paper presents measurement techniques and analysis methods under normal engine and vehicle test procedures to minimize sooting combustion modes in transient engine operation.
Technical Paper

Diffusion Supporting Passive Filter Regeneration- A Modeling Contribution on Coated Filters

2018-04-03
2018-01-0957
Wall flow particulate filters have been used as a standard exhaust aftertreatment device for many years. The interaction of particulate matter (PM) regeneration and catalytically supported reactions strongly depends on the given operating conditions. Temperature, species concentration and mass flow cause a change from advective to diffusive-controlled flow conditions and influence the rate controlling dominance of individual reactions. A transient 1D+1D model is presented considering advective and diffusive transport phenomena. The reaction scheme focuses on passive PM conversion and catalytic oxidation of NO. The model is validated with analytical references. The impact of back-diffusion is explored simulating pure advective and combined advective diffusive species transport. Rate approaches from literature are applied to investigate PM conversion at various operating conditions.
Technical Paper

Lubrication Testing Methodology for Vehicle Class and Usage Based Validation

2022-08-30
2022-01-1101
System lubrication in automotive powertrains is a growing topic for development engineers. Hybrid and pure combustion system complexity increases in search of improved efficiency and better control strategy, increasing the number of components with lubrication demand and the interplay between them, while fully electric systems drive for higher input speeds to increase e-motor efficiency, increasing bearing and gear feed rate demands. Added to this, many e-axle and hybrid systems are in development with a shared medium and circuit for e-motor cooling and transmission lubrication. Through all this, the lubricant forms a common thread and is a fundamental component in the system, but no standardized tests can provide a suitable methodology to investigate the adequate lubrication of components at powertrain level, to support the final planned vehicle usage.
Technical Paper

A Method for the Characterization of Off-Road Terrain Severity

2006-10-31
2006-01-3498
Highway and roadway surface measurement is a practice that has been ongoing for decades now. This sort of measurement is intended to ensure a safe level of road perturbances. The measurement may be conducted by a slow moving apparatus directly measuring the elevation of the road, at varying distance intervals, to obtain a road profile, with varying degrees of resolution. An alternate means is to measure the surface roughness at highway speeds using accelerometers coupled with high speed distance measurements, such as laser sensors. Vehicles out rigged with such a system are termed inertial profilers. This type of inertial measurement provides a sort of filtered roadway profile. Much research has been conducted on the analysis of highway roughness, and the associated metrics involved. In many instances, it is desirable to maintain an off-road course such that the course will provide sufficient challenges to a vehicle during durability testing.
Technical Paper

Durability Test Suite Optimization Based on Physics of Failure

2018-04-03
2018-01-0792
Dynamometer (dyno) durability testing plays a significant role in reliability and durability assessment of commercial engines. Frequently, durability test procedures are based on warranty history and corresponding component failure modes. Evolution of engine designs, operating conditions, electronic control features, and diagnostic limits have created challenges to historical-based testing approaches. A physics-based methodology, known as Load Matrix, is described to counteract these challenges. The technique, developed by AVL, is based on damage factor models for subsystem and component failure modes (e.g. fatigue, wear, degradation, deposits) and knowledge of customer duty cycles. By correlating dyno test to field conditions in quantifiable terms, such as customer equivalent miles, more effective and efficient durability test suites and test procedures can be utilized. To this end, application of Load Matrix to a heavy-duty diesel engine is presented.
Technical Paper

Automated Test Case Generation and Virtual Assessment Framework for UN Regulation on Automated Lane Keeping Systems

2021-04-06
2021-01-0870
Validation of highly automated or autonomous vehicles is nowadays still a major challenge for the automotive industry. Furthermore, the homologation of ADAS/AD vehicles according to global regulations is getting more essential for their safe development and deployment around the world. In order to assure that the autonomous driving function is able to cope with the huge number of possible situations during operation, comprehensive testing of the functions is required. However, conventional testing approaches such as driving distance-based validation approach in the real world, can be time- and cost-consuming. Therefore, a scenario-based virtual validation and testing method is considered to be a proper solution. In this paper, we propose a virtual assessment framework using a fully automated test case generation method. This framework is embedded into the continuous development and validation process.
Technical Paper

Considerations in Designing a Recovery Steam Generator for Incineration Plants

1992-08-03
929266
The design of recovery steam generators for incineration plants encounters certain specific problems, related to the nature of the exhausted gases, which, if not properly faced, can strongly condition the conduction of the whole system. Two problems, namely, demand for particular attention: the corrosion at high temperature and the formation of organochlorine compounds, in presence of ashes and/or deposits for definite temperature intervals. These phenomena can be controlled and minimized, whenever possible, by limiting to the greatest extent the regions where the temperatures of the metallic walls and of the ashes and/or deposits are within the critical interval.
Technical Paper

3D-CFD Methodologies for a Fast and Reliable Design of Ultra-Lean SI Engines

2022-06-14
2022-37-0006
The continuous pursuit of higher combustion efficiencies, as well as the possible usage of synthetic fuels with different properties than fossil-ones, require reliable and low-cost numerical approaches to support and speed-up engines industrial design. In this context, SI engines operated with homogeneous ultra-lean mixtures both characterized by a classical ignition configuration or equipped with an active prechamber represent the most promising solutions. In this work, for the classical ignition arrangement, a 3DCFD strategy to model the impact of the ignition system type on the CCV is developed using the RANS approach for turbulence modelling. The spark-discharge is modelled through a set of Lagrangian particles, whose velocity is modified with a zero-divergence perturbation at each discharge event, then evolved according to the Simplified Langevin Model (SLM) to simulate stochastic interactions with the surrounding gas flow.
Technical Paper

High Performance Linearization Procedure for Emission Analyzers

2000-03-06
2000-01-0798
Increasing requirements for the result quality of exhaust emission analyzers and state of the art analyzer technology require a new point of view regarding measuring range definitions and linearization procedures. To make best use of the power of this analyzer technology, linearization procedures need reconsideration. In certification laboratories, legislation defines the procedures to linearize an exhaust emission analyzer more or less stringently. On the other hand, on testbeds for development purposes there are many possibilities for making use of today's improved analyzers. However, procedures are often used in development labs that are very similar to those mentioned in the legislation. For some measurement purposes it is necessary to leave these procedures regarding measuring ranges and their specifications behind. The exhaust gas analyzing system has to provide consistent result quality during the whole test procedure.
Technical Paper

New Fuel Mass Flow Meter - A Modern and Reliable Approach to Continuous and Accurate Fuel Consumption Measurement

2000-03-06
2000-01-1330
Over the past few years, the fuel mass measurement gained in importance to record the consumed fuel mass and the specific fuel consumption [g/kWh] with high accuracy. Measuring instruments, such as positive displacement meters, methods based on the burette or the Wheatstone bridge mass flow meter measure either the volumetric flow and a temperature-dependant fuel density correction is necessary or they have old technology and therefore poor accuracy and repeatability. A new-generation Coriolis sensor featuring an ideal measurement range for engine test beds but still with flow depending pressure drop has been integrated in a fuel meter to ensure that no influence is given to the engine behaviour for example after engine load change. The new Coriolis meter offers better accuracy and repeatability, gas bubble venting and easy test bed integration. For returnless fuel injection systems the fuel system supplies the fuel pressure.
X