Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Development and Validation of an Analytical Seal Bead Design Model for Automotive Superplastic Forming

2010-04-12
2010-01-0979
With the increasing demand for fuel efficient vehicles, technologies like superplastic forming (SPF) are being developed and implemented to allow for the utilization of lightweight automotive sheet materials. While forming under superplastic conditions leads to increased formability in lightweight alloys, such as aluminum, the slower forming times required by the technology can limit the technology to low to mid production levels. One problem that can increase forming time is the reduction of forming pressure due to pressurizing (forming) gas leaks, during the forming cycle, at the die/sheet/blankholder interface. Traditionally, such leaks have been successfully addressed through the use of a seal bead. However, for advanced die technologies that result in reduced cycle times (such as hot draw mechanical performing, which combine aspects of mechanical preforming of the sheet metal followed by SPF), the use of seal beads can restrict the drawing of sheet material into the forming die.
Technical Paper

Characterization and Modeling of Wet Clutch Actuator for High-Fidelity Propulsion System Simulations

2020-04-14
2020-01-1414
Innovations in mobility are built upon a management of complex interactions between sub-systems and components. A need for CAE tools that are capable of system simulations is well recognized, as evidenced by a growing number of commercial packages. However impressive they are, the predictability of such simulations still rests on the representation of the base components. Among them, a wet clutch actuator continues to play a critical role in the next generation propulsion systems. It converts hydraulic pressure to mechanical force to control torque transmitted through a clutch pack. The actuator is typically modeled as a hydraulic piston opposed by a mechanical spring. Because the piston slides over a seal, some models have a framework to account for seal friction. However, there are few contributions to the literature that describe the effects of seals on clutch actuator behaviors.
Journal Article

Predicting Stress vs. Strain Behaviors of Thin-Walled High Pressure Die Cast Magnesium Alloy with Actual Pore Distribution

2016-04-05
2016-01-0290
In this paper, a three-dimensional (3D) microstructure-based finite element modeling method (i.e., extrinsic modeling method) is developed, which can be used in examining the effects of porosity on the ductility/fracture of Mg castings. For this purpose, AM60 Mg tensile samples were generated under high-pressure die-casting in a specially-designed mold. Before the tensile test, the samples were CT-scanned to obtain the pore distributions within the samples. 3D microstructure-based finite element models were then developed based on the obtained actual pore distributions of the gauge area. The input properties for the matrix material were determined by fitting the simulation result to the experimental result of a selected sample, and then used for all the other samples’ simulation. The results show that the ductility and fracture locations predicted from simulations agree well with the experimental results.
Journal Article

Effect of Thermal Exposure Time on the Relaxation of Residual Stress in High Pressure Die Cast AM60

2016-04-05
2016-01-0423
Magnesium alloys are becoming more commonly used for large castings with sections of varying thicknesses. During subsequent processing at elevated temperatures, residual stresses may relax and become a potential mechanism for part distortion. This study was conducted to quantify the effects of thermal exposure on residual stresses and relaxation in a high pressure die cast magnesium (AM60) alloy. The goal was to characterize relaxation of residual stresses at temperatures that are commonly experienced by body components during a typical paint bake cycle. A residual stress test sample design and quench technique developed for relaxation were used and a relaxation study was conducted at two exposure temperatures (140°C and 200°C) over a range of exposure times (0.25 to 24 hours). The results indicate that a significant amount of residual stress relaxation occurred very rapidly during exposure at both exposure temperatures.
Journal Article

Stress-Corrosion Cracking Evaluation of Hot-Stamped AA7075-T6 B-Pillars

2017-03-28
2017-01-1271
High-strength aluminum alloys such as 7075 can be formed using advanced manufacturing methods such as hot stamping. Hot stamping utilizes an elevated temperature blank and the high pressure stamping contact of the forming die to simultaneously quench and form the sheet. However, changes in the thermal history induced by hot stamping may increase this alloy’s stress corrosion cracking (SCC) susceptibility, a common corrosion concern of 7000 series alloys. This work applied the breaking load method for SCC evaluation of hot stamped AA7075-T6 B-pillar panels that had been artificially aged by two different artificial aging practices (one-step and two-step). The breaking load strength of the specimens provided quantitative data that was used to compare the effects of tensile load, duration, alloy, and heat treatment on SCC behavior.
Technical Paper

Eliminating Drum Brake Squeal by a Damped Iron Drum Assembly

2007-04-16
2007-01-0592
Control of drum brake squeal is difficult to accomplish. After many trials guided by CAE and previous experience, for a passenger car it was felt that changing the metallurgical characteristics of the drum would lead to improved noise performance. The chemistry of the drum casting material was altered. The carbon equivalent was modified by increasing carbon and silicon content of the castings as well as changing the other materials. The integral hub and drum assembly was tested on two different dynamometers. The results were also verified by finite element complex eigenvalue analysis. Finally the solution was validated through vehicle level testing - Los Angeles City Traffic (LACT). For the structural consideration rotary fatigue was evaluated by CAE comparison followed by test rig confirmation. The higher carbon equivalent material drums successfully eliminated the annoying squeal in customer vehicles.
Technical Paper

Numerical Analysis of Thermal Growth of Cast Aluminum Engine Components

2008-04-14
2008-01-1419
As-cast or as-solution treated cast aluminum A319 has copper solutions within its aluminum dendrite. These copper solutions precipitate out to form Al2Cu through a sequence of phase changes and bring with them volume changes at elevated temperatures. These volume changes, referred to as thermal growth are irreversible. The magnitude of thermal growth at a material point is decided by the temperature history of the material point. When an under aged or non heat treated cast aluminum is exposed to non-uniform temperature such as that during engine operation, thermal growth leads to non-uniform volume change and thus additional self balanced stresses. These stresses remain inside material as residual stresses even when the temperature of the material is uniform again. In the present paper, numerical analysis method for thermal growth is developed and integrated into engine operation analysis.
Technical Paper

Engineering Moveable Glass Window Seals of Automotive Door Using Upfront CAE

1998-09-29
982383
The traditional moveable glass window seal development process has relied heavily on physical prototypes for design verification. Due to frequent styling changes and an overall reduction in design time, physical prototypes for the glass window seals have proven to be inadequate. Utilization of computer aided engineering (CAE) tools is necessary in order to shorten lead time. CAE tools will help to decrease expensive prototyping, free up valuable manufacturing line time, and improve overall quality. A cross functional approach has been applied to expand the scope beyond traditional methods of moveable glass window seal design, such as wedged boarding, into new computerized modeling methods. The CAE was used to address major requirements of the glass window seals including glass velocity, glass stall force, sealing-ability, seal durability, seal assembly, seal appearance, and regulator motor current.
Technical Paper

The Effects of Flare Component Specifications on the Sealing of Double Inverted Flare Brake Tube Joints

2009-04-20
2009-01-1029
While SAE double inverted flares have been in use for decades, leaking joints continue to be a problem for OEMs in production settings consuming time and energy to detect and correct them before releasing vehicles from the assembly plant. It should be noted that this issue is limited to first-time vehicle assembly; once a flared brake tube joint is sealed at the assembly plant it remains sealed during normal customer usage. From their inception through the late 1980s most brake tubes have been 3/16″ nominal diameter. With the advent of higher flow requirements of Traction Control and Yaw/Stability control systems, larger tubes of 1/4″ and 5/16″ size have also been introduced. While it was known that the first-time sealing capability of the 3/16″ joint was not 100%, leakers were generally containable in the production environment and the joint was regarded as robust.
Technical Paper

Progress Toward a Magnesium-Intensive Engine: The USAMP Magnesium Powertrain Cast Components Project

2004-03-08
2004-01-0654
The US Automotive Materials Partnership (USAMP) and the US Department of Energy launched the Magnesium Powertrain Cast Components Project in 2001 to determine the feasibility and desirability of producing a magnesium-intensive engine; a V6 engine with a magnesium block, bedplate, oil pan, and front cover. In 2003 the Project reached mid-point and accomplished a successful Decision Gate Review for entry into the second half (Phase II) of the Project. Three tasks, comprising Phase I were completed: (1) evaluation of the most promising low-cost, creep-resistant magnesium alloys, (2) design of the engine components using the properties of the optimized alloys and creation of cost model to assess the cost/benefit of the magnesium-intensive engine, and (3) identification and prioritization of scientific research areas deemed by the project team to be critical for the use of magnesium in powertrain applications.
Technical Paper

The Current State of Worldwide Standards for Ferrous Castings

2004-03-08
2004-01-0794
Technical Standards are essential for the expanded use of any engineering material. The Society of Automotive Engineers (SAE) Iron and Steel Castings Committee has been reworking existing, (and issuing new), standards for automotive iron and steel castings. This paper will review the status of the SAE standards for Ductile Iron, Austempered Ductile Iron (ADI), Compacted Graphite Iron (CGI) and high Silicon-Molybdenum (Si-Mo) Ductile Iron, Gray Iron and Steel Castings. The SAE Standards, (and draft standards), will be critically compared to those for ASTM and ISO. Salient differences in the standards will be discussed and implications to design engineers will be addressed. Comparisons to other, competitive materials (and their standards) will be made.
Technical Paper

Acoustic Characteristics of Automotive Catalytic Converter Assemblies

2004-03-08
2004-01-1002
An experimental study of the acoustic characteristics of automotive catalytic converters is presented. The investigation addresses the effects and relative importance of the elements comprising a production catalytic converter assembly including the housing, substrate, mat and seals. Attenuation characteristics are measured for one circular and one oval catalytic converter geometry, each having 400 cell per square inch substrates. For each geometry, experimental results are presented to address the effect of individual components in isolation, and in combination with other assembly components. Additional experiments investigate the significance of acoustic paths around the substrate and through the peripheral wall of the substrate. The experimental results are compared to address the significance of each component on the overall attenuation.
Technical Paper

Oxidation Stability of Automatic Transmission Fluids -A Study by the International Lubricants Standardization and Approval Committee (ILSAC) ATF Subcommittee

2001-05-07
2001-01-1991
The International Lubricant Standardization and Approval Committee (ILSAC) ATF subcommittee members have compared the two oxidation bench test methods, Aluminum Beaker Oxidation Test (ABOT) and Indiana Stirring Oxidation Stability Test (ISOT), using a number of factory-fill and service-fill ATFs obtained in Japan and in the US. In many cases, the ATFs were more severely oxidized after the ABOT procedure than after the same duration of the ISOT procedure. The relative severity of these two tests was influenced by the composition of the ATFs. The bench test oxidation data were compared with the transmission and the vehicle oxidation test data.
Technical Paper

Effects of Fuel Volatility, Load, and Speed on HC Emissions Due to Piston Wetting

2001-05-07
2001-01-2024
Piston wetting can be isolated from the other sources of HC emissions from DISI engines by operating the engine predominantly on a gaseous fuel and using an injector probe to impact a small amount of liquid fuel on the piston top. This results in a marked increase in HC emissions. In a previous study, we used a variety of pure liquid hydrocarbon fuels to examine the influence of fuel volatility and structure on the HC emissions due to piston wetting. It was shown that the HC emissions correspond to the Leidenfrost effect: fuels with very low boiling points yield high HCs and those with a boiling point near or above the piston temperature produce much lower HCs. All of these prior tests of fuel effects were performed at a single operating condition: the Ford World Wide Mapping Point (WWMP). In the present study, the effects of load and engine speed are examined.
Technical Paper

The Effect of Seal Stiffness on Door Chucking and Squeak and Rattle Performance

2004-03-08
2004-01-1562
Traditionally, door seals are designed to achieve good wind noise performance, water leakage and door closing effort in a vehicle design and development process. However, very little is known concerning the effect of door seal design on vehicle squeak and rattle performance. An earlier research work at Ford indicates a strong correlation between the diagonal distortions of body closure openings (in a low frequency range 0 - 50 Hz) and overall squeak and rattle performance. Another research at Ford reveals that relative accelerations between door latch and striker in a low frequency region (0 - 50 Hz) correlate well with door chucking performance. The findings of this research work enable engineers to assess squeak and rattle and door chucking performance using vehicle low frequency NVH CAE models at a very early design stage.
Technical Paper

Managing Thermal Growth for Large Class “A” Polymer Body Panel Closure Systems

2002-01-04
2002-01-0276
The history behind Polymer Class “A” Body Panels for automotive applications is very interesting. The driving factors behind these applications have not changed significantly over the past sixty years. Foremost among these factors is the need for corrosion and dent resistance. Beginning with Saturn in 1990, interest in polymer body panels grew and continues to grow up to the present day, with every new global application. Today, consumers and economic factors drive the industry trend towards plastic body panels. These include increased customization and fuel economy on the consumer side. Economic factors such as lower unit build quantities, reduced vehicle mass, investment cost, and tooling lead times influence material choice for industry. The highest possible performance, and fuel economy, at the lowest price have always been a goal.
Technical Paper

Classical Plasticity Hardening for Finite Element Analysis of Cast Aluminum Powertrain Components

2002-03-04
2002-01-0392
Material stress strain relations of cast aluminum are both temperature and strain rate dependent when used for themomechanical fatigue analysis. In the present paper, A unified visco-plasticity relation and several classical plasticity relations available in commercial finite element code ABAQUS are compared in their capability and computation efficiency for high temperature cyclic material stress analysis. The unified viscoplasticity considers simultaneously plasticity and creep offers the best, most accurate approach for a description of the stress and strain behavior. For certain applications, when the needs of a speedy computation weighs more than accuracy, classical plasticity can be used to approximate the viscoplastic behavior. In such situations, it is shown that combined hardening model is most promising in capturing observed phenomena.
Technical Paper

Residual Stresses in Cup Drawing of Automotive Alloys

2002-07-09
2002-01-2135
Residual stresses in metals are caused by a number of processes such as inhomogeneous deformation, phase changes and temperature gradients. This investigation focuses on the residual stresses caused by plastic deformation of automotive metals. Such stresses are responsible for part springback and shape distortion in many manufacturing and assembly processes. Tensile residual stresses may lead to stress cracking and, in some alloys, to stress corrosion cracking which may ultimately lead to premature product failure. The residual stress potential of metals can be evaluated by using the Split Ring Test Method. The test can be used to evaluate the effect of materials on residual stresses in cup drawing. Drawn cups are used because they produce large amounts of residual stresses and, therefore, increase measurement accuracy and reduce experimental error. A closed form analytical solution is used to estimate residual stresses in split rings taken from sections cut from the drawn cups.
Technical Paper

Effects of Engine Oil Formulation Variables on Exhaust Emissions in Taxi Fleet Service

2002-10-21
2002-01-2680
The relationship between engine oil formulations and catalyst performance was investigated by comparatively testing five engine oils. In addition to one baseline production oil with a calcium plus magnesium detergent system, the remaining four oils were specifically formulated with different additive combinations including: one worst case with no detergent and production level zinc dialkyldithiophosphate (ZDTP), one with calcium-only detergent and two best cases with zero phosphorus. Emissions performance, phosphorus loss from the engine oil, phosphorus-capture on the catalyst and engine wear were evaluated after accumulating 100,000 miles of taxi service in twenty vehicles. The intent of this comparative study was to identify relative trends.
X