Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

Neck Injury Prevention in Low Speed Rear Impact

2007-04-16
2007-01-0378
Head restraint has become an important element in seat design due to the severity of neck injuries in rear-end collisions. The objective of this paper is to present an analytical and efficient approach to assist engineers in analyzing the design parameters of the seat and head restraint system. The CAE simulation models with Bio-RID dummy were assembled to correlate to 10 mph rear impact sled tests. The correlated models were then adopted in Design of Experiment (DOE) studies to explore all the significant design parameters influencing occupant neck injuries. Based on the results from the DOE studies, we are able to improve the seat and head restraint designs for reducing the risk of neck injuries in rear-end impacts.
Technical Paper

Auto-Correlation of an Occupant Restraint System Model Using a Bayesian Validation Metric

2009-04-20
2009-01-1402
Computer Aided Engineering (CAE) has become a vital tool for product development in automotive industry. Various computer models for occupant restraint systems are developed. The models simulate the vehicle interior, restraint system, and occupants in different crash scenarios. In order to improve the efficiency during the product development process, the model quality and its predictive capabilities must be ensured. In this research, an objective model validation metric is developed to evaluate the model validity and its predictive capabilities when multiple occupant injury responses are simultaneously compared with test curves. This validation metric is based on the probabilistic principal component analysis method and Bayesian statistics approach for multivariate model assessment. It first quantifies the uncertainties in both test and simulation results, extracts key features, and then evaluates the model quality.
Technical Paper

Reliability-Based Design Optimization of a Vehicle Exhaust System

2004-03-08
2004-01-1128
This paper focuses on the methodology development and application of reliability-based design optimization to a vehicle exhaust system under noise, vibration and harshness constraints with uncertainties. Reliability-based design optimization provides a systematic way for considering uncertainties in product development process. As traditional reliability analysis itself is a design optimization problem that requires many function evaluations, it often requires tremendous computational resources and efficient optimization methodologies. Multiple functional response constraints and large number of design variables add further complexity to the problem. This paper investigates an integrated approach by taking advantages of variable screening, design of experiments, response surface model, and reliability-based design optimization for problems with functional responses. A typical vehicle exhaust system is used as an example to demonstrate the methodology.
Technical Paper

Occupant Model Correlation Using a Genetic Algorithm

2004-03-08
2004-01-1624
Computer modeling has played important roles and gained great momentum in product development as numerical methods, computer software and hardware technologies advance rapidly. Computer models (e.g. MADYMO) that simulate vehicle interior, restraint system and occupants in various crash modes have been widely used to improve occupant safety. However, to build good occupant models, engineers often have to spend tremendous time on model correlation. The challenge of model correlation for occupant safety is that it requires matching numerous injury curves with tests, for examples: head G, chest G, chest deflection, shoulder belt load, femur loads, neck load and moment. Traditionally, this model correlation task is done by a trial and error method. This paper attempts to solve the problem systematically by using a genetic algorithm. It demonstrates that the genetic algorithm is a valuable optimization tool to obtain a high quality MADYMO model.
Technical Paper

Multi-Objective Optimal Design and Robustness Assessment Framework for Vehicle Side Impact Restraint System Design

2011-04-12
2011-01-0107
With the increasing demands of developing vehicles for global markets, different regulations and public domain tests need to be considered simultaneously for side impact. Various side impact countermeasures, such as side airbags, door trim, energy absorbing foams etc., are employed to meet multiple side impact performance requirements. However, it is quite a challenging task to design a balanced side impact restraint system that can meet all side impact requirements for multiple crash modes. This paper presents an integrated multi-objective optimal design and robustness assessment framework for vehicle side impact restraint system design.
Technical Paper

Improving Robustness Assessment Quality Via Response Decomposition

2006-04-03
2006-01-0760
Response surface methods have been widely used in robust design for reducing turn-around time and improving quality. That is, from a given set of CAE data (design-of-experiments results), many different robust optimization studies can be performed with different constraints and objectives without large, recurring, computation costs. However, due to the highly nonlinear and non-convex nature of occupant injury responses, it is difficult to generate high quality response surface models from them. In this paper, we apply a cross validation technique to estimate the accuracy of response surface models, particularly in the context of robustness assessment. We then decompose selected occupant injury responses into more fundamental signals before fitting surfaces to improve the predictivity of the response surface models. Real-world case studies on an occupant restraint system robust design problem are used to demonstrate the methodology.
Technical Paper

Robust Design for Occupant Restraint System

2005-04-11
2005-01-0814
Computational analysis of occupant safety has become an efficient tool to reduce the development time for a new product. Multi-body computer models (e.g. Madymo models) that simulate vehicle interior, restraint system and occupants in various crash modes have been widely used in the occupant safety area. To ensure public safety, many injury numbers, such as head injury criteria, chest acceleration, chest deflection, femur loads, neck load, and neck moment, are monitored. Deterministic optimization methods have been employed to meet various safety requirements. However, with the further emphasis on product quality and consistency of product performance, variations in modeling, simulation, and manufacturing, need to be considered.
Technical Paper

Experience With Response Surface Methods for Occupant Restraint System Design

2005-04-11
2005-01-1306
Response surface methodologies (RSMs) have been proposed as surrogate models in vehicle design processes to gain insight and improve turnaround time for optimization and robust design. However, when studying the vehicle occupants during crash events, nonlinearities in responses, coupled with the relatively high dimensionality of vehicle design, can yield misleading results with little or no warning from the response surface algorithms. To ensure the accuracy and reliability of RSMs, fast and dependable error estimation procedures are essential for enlightening how well a response surface predicts highly nonlinear phenomena, given a limited number of model simulations. Such error estimation methods are also useful for providing guidance on how many simulation runs are needed for reliable RSM construction. In this paper, a fast cross validation error estimate procedure is first presented, applied to the multivariable adaptive regression spline (MARS) response surface method.
X