Refine Your Search

Topic

Author

Search Results

Technical Paper

Effect of Fuel Dissolved in Crankcase Oil on Engine-Out Hydrocarbon Emissions from a Spark-Ignited Engine

1997-10-01
972891
A single-cylinder, spark-ignited engine was run on a certification test gasoline to saturate the oil in the sump with fuel through exposure to blow-by gas. The sump volume was large relative to production engines making its absorption-desorption time constant long relative to the experimental time. The engine was motored at 1500 RPM, 90° C coolant and oil temperature, and 0.43 bar MAP without fuel flow. Exhaust HC concentrations were measured by on-line FID and GC analysis. The total motoring HC emissions were 150 ppmC1; the HC species distribution was heavily weighted to the low-volatility components in the gasoline. No high volatility components were visible. The engine was then fired on isooctane fuel at the above conditions, producing a total engine-out HC emission of 2300 ppmC1 for Φ = 1.0 and MBT spark timing.
Technical Paper

CFD Quality - A Calibration Study for Front-End Cooling Airflow

1998-02-23
980039
There is a recognized need in the industry to improve the quality of our CFD (Computational Fluid Dynamics) processes. One part of that initiative is to measure the accuracy of the current processes and identify opportunities for improvement. This report documents the results of a disciplined calibration process that uses statistical analyses techniques to assess CFD quality. The process is applied to UH3D, a Navier-Stokes solver used at Ford to model vehicle front-end geometry and engine cooling systems. The study is focused on a Taurus under relatively ideal circumstances to address one of the major deliverables from the analytical process, i.e., what is the accuracy of the front-end cooling airflow predictions? To address this question, high quality isothermal experiments and calculations were conducted on twenty-three front-end configurations at four non-idle operating conditions.
Technical Paper

Examination of the Corrosion Behavior of Creep-Resistant Magnesium Alloys in an Aqueous Environment

2007-04-16
2007-01-1023
An electrochemical testing protocol for assessing the intrinsic corrosion-resistance of creep-resistant magnesium alloys in aqueous environments, and effects of passivating surface films anticipated to develop in the presence of engine coolants is under development. This work reports progress in assessing the relative corrosion resistance of the base metals (AMC-SC1, MRI-202S, MRI-230D, AM50 and 99.98% Mg) in a common test environment, based on a near-neutral pH buffered saline solution, found to yield particularly stable values for the open-circuit or corrosion potential. This approach was found to provide a platform for the eventual assessment of the durability of certain passivating layers expected to develop during exposure of the magnesium alloys to aqueous coolants.
Technical Paper

Cooling Inlet Aerodynamic Performance and System Resistance

2002-03-04
2002-01-0256
This report is a contribution to the understanding of inlet aerodynamics and cooling system resistance. A characterization of the performance capability of a vehicle front-end and underhood, called the ram curve, is introduced. It represents the pressure recovery/loss of the front-end subsystem - the inlet openings, underhood, and underbody. The mathematical representation, derived from several experimental investigations on vehicles and components, has four basic terms: Inlet ram pressure recovery; free-stream energy recovered when the vehicle is moving Basic inlet loss; inlet restriction when the vehicle is stationary Pressure loss of the engine bay Engine bay-exit pressure Not surprisingly, the amount of frontal projection of radiator area through the grille, bumper and front-end structure (called projected inlet area), and flow uniformity play a major role in estimating inlet aerodynamic performance.
Technical Paper

Boosted Gasoline Direct Injection Engines: Comparison of Throttle and VGT Controllers for Homogeneous Charge Operation

2002-03-04
2002-01-0709
In this paper, we compare controllers for the electronic throttle and variable geometry turbocharger in boosted stoichiometric gasoline direct injection engines. The control objectives are fast response and small overshoot of the intake manifold pressure. The problem is treated within the multi-objective optimization framework, applied to a simulation model of the engine. Pareto optimal fronts are constructed for each of the controllers and compared to each other. The best controller is thereby identified and further options to improve its response via preview-based control are discussed.
Technical Paper

Effect of Sac Volume on Injector Performance

1992-02-01
920680
The “Sac” is a small volume within the fuel flow path of an electronic fuel injector. In this study, it is defined as the volume between the valve seat (fuel shut off point) and the entrance to the final metering orifice of the injector. This sac causes fuel injectors to deliver uncalibrated excess fuel when the engine is operated under closed throttle, high manifold vacuum conditions such as vehicle decelerations or idle. This paper describes a simple mass balance model used to predict the effect of the sac volume on injector fuel delivery under extreme operating conditions. The model prediction compares directly with experimental results for injectors with different sac volumes.
Technical Paper

Correlation of Exhaust Valve Temperatures with Engine Reynolds Number in a 1.9 L Engine

1992-02-01
920063
Exhaust valve temperatures are important in the selection of valve materials, and have strong effects on borderline spark angle and pre-ignition borderline limit. In order to support analytical modeling of exhaust valve temperatures and to correlate exhaust valve temperatures as a function of engine Reynolds number, exhaust valve temperatures were mapped as a function of spark angle and engine coolant temperatures at 2000 rpm. In addition temperatures were measured at wide open throttle at 2000, 3000, and 4000 rpm. The exhaust valve temperature was expressed as a dimensionless temperature using the exhaust gas temperature and the engine coolant temperature, then the dimensionless temperature was correlated as a function of spark angle and engine Reynolds number. The results indicate that once the temperature is known at a given speed and load condition for any one cylinder, the temperature at other speed and load conditions can be reasonably estimated.
Technical Paper

Development of a One-Dimensional Engine Thermal Management Model to Predict Piston and Oil Temperatures

2011-04-12
2011-01-0647
A new, 1-D analytical engine thermal management tool was developed to model piston, oil and coolant temperatures in the Ford 3.5L engine family. The model includes: a detailed lubrication system, including piston oil-squirters, which accurately represents oil flow rates, pressure drops and component heat transfer rates under non-isothermal conditions; a detailed coolant system, which accurately represents coolant flow rates, pressure drops and component heat transfer rates; a turbocharger model, which includes thermal interactions with coolant, oil, intake air and exhaust gases (modeled as air), and heat transfer to the surroundings; and lumped thermal models for engine components such as block, heads, pistons, turbochargers, oil cooler and cooling tower. The model was preliminarily calibrated for the 3.5L EcoBoost™ engine, across the speed range from 1500 to 5500 rpm, using wide-open-throttle data taken from an early heat rejection study.
Technical Paper

Flow Noises Associated with Integrated Compressor Anti-Surge Valve

2011-05-17
2011-01-1532
Turbocharged gasoline engines are typically equipped with a compressor anti-surge valve or CBV (compressor by-pass valve). The purpose of this valve is to release pressurized air between the throttle and the compressor outlet during tip-out maneuvers. At normal operating conditions, the CBV is closed. There are two major CBV mounting configurations. One is to mount the CBV on the AIS system. The other is to mount the CBV directly on the compressor housing, which is called an integrated CBV. For an integrated CBV, at normal operating conditions, it is closed and the enclosed passageway between high pressure side and low pressure side forms a “side-branch” in the compressor inlet side (Figure 12). The cavity modes associated with this “side-branch” could be excited by shear layer flow and result in narrow band flow noises.
Technical Paper

Impact of Computer Aided Engineering on Ford Motor Company Light Truck Cooling Design and Development Processes

1993-11-01
932977
This paper presents the benefits of following a disciplined thermal management process during the design and development of Ford Light Truck engine cooling systems. The thermal management process described has evolved through the increased use of Computer Aided Engineering (CAE) tools. The primary CAE tool used is a numerical simulation technique within the field of Computational Fluid Dynamics (CFD). The paper discusses the need to establish a heat management team, develop a heat management model, construct a three dimensional CFD model to simulate the thermal environment of the engine cooling system, and presents CFD modeling examples of Ford Light Trucks with engine driven cooling fans.
Technical Paper

Synthesis of Powertrain Sounds for Investigations in Roughness

1993-05-01
931333
At a time where customer preference is becoming an important product development criteria, measures which quantify subjectively perceived auditory sensations are becoming useful in developing meaningful sound quality criteria. One proposed measure which has not yet seen a great deal of application to automotive sounds is that which attempts to quantify the sensation of roughness. The applicability of such a proposed measure can be established through a series of subjective experiments. Typically, such experiments involve the presentation and evaluation of a group of sounds which vary in their degree of roughness. In order to generate test sounds, a system for the modeling and synthesis of pawertrain sound has been developed which isolates specific signal components which are known to affect the roughness of a sound.
Technical Paper

Impact of Computer Aided Engineering on Ford Light Truck Cooling Design and Development Processes

1993-04-01
931104
This paper presents the benefits of following a disciplined thermal management process during the design and development of Ford Light Truck engine cooling systems. The thermal management process described has evolved through the increased use of Computer Aided Engineering (CAE) tools. The primary CAE tool used is a numerical simulation technique within the field of Computational Fluid Dynamics (CFD). The paper discusses the need to establish a heat management team, develop a heat management model, construct a three dimensional CFD model to simulate the thermal environment of the engine cooling system, and presents CFD modeling examples of Ford Light Trucks with engine driven cooling fans.
Technical Paper

A Flow Network Approach to Vehicle Underhood Heat Transfer Problem

1993-04-01
931073
A flow network method was developed to predict the underhood temperature distribution of an automobile. The method involves the solution of simplified energy and momentum equations of the air flow in control volumes defined by subdividing the air space between the surfaces of the underhood components and the front-end geometry. The control volumes are interconnected by ducts with branches and bends to form a flow network. Conservation of mass and momentum with appropriate pressure-loss coefficients leads to a system of algebraic equations to be solved for the flow rates through each volume. The computed flow rates are transferred to a thermal model to calculate the temperatures of the air and the major vehicle components that affect the underhood environment. The method was applied to a 1986 3.0L Taurus and compared with vehicle experiments conducted in a windtunnel.
Technical Paper

Determination of the Effects of Inlet Air Velocity and Temperature Distributions on the Performance of an Automotive Radiator

1994-03-01
940771
In an automotive engine cooling system, the heat rejected to the coolant by the engine and other components is transferred to the air by the radiator. The cooling system engineer must predict the coolant inlet temperature (the top water temperature) for each operating conditions of interest. Computational fluid dynamics (CFD) computer programs have been developed to predict the cooling air flow velocities and temperatures entering the radiator. Radiator effectiveness is measured on a calorimeter with uniform air velocity and temperature entering the radiator. Computer programs have been developed to predict calorimeter performance for new radiators based on experimental data from existing components. In applying the calorimeter performance model to a vehicle, some means must be used to derate the performance slightly based on the non-uniform inlet air velocity and temperature distribution entering the radiator.
Technical Paper

The Effect of Air/Fuel Ratio on Wide Open Throttle HC Emissions from a Spark-Ignition Engine

1994-10-01
941961
Currently most automotive manufacturers calibrate for rich air/fuel ratios at wide open throttle which produces lower exhaust gas temperatures. Future federal emissions regulations may require less enrichment under these conditions. This study was undertaken to address the question of what happens to engine-out hydrocarbon emissions with different air/fuel ratios at wide open throttle. Tests were run on a single cylinder research engine with a two valve combustion chamber at a compression ratio of 9:1. The test matrix included three air/fuel ratios (10.5, 12.5 and 14.5) and two speeds (1500 and 3000 rpm) at wide open throttle as well as three air/fuel ratios (12.5, 14.6 and 16.5) at a part load condition (1500 rpm, 3.8 bar IMEP). The exhaust was sampled and analyzed for both total and speciated hydrocarbons. The speciation analysis provided concentration data for hydrocarbons present in the exhaust containing twelve or fewer carbon atoms.
Technical Paper

A Non-Intrusive Method of Measuring PCV Blowby Constituents

1994-10-01
941947
A technique is presented that has been successfully demonstrated to non-intrusively and quickly sample gases typically found in PCV systems. Color Detection Tubes (CDTs) were used with a simple sampling arrangement to monitor CO2, NOx, O2, and H2O(g) at the closure line, crankcase, and PCV line. Measurements were accurate and could be made instantaneously. Short Path Thermal Desorbtion Tubes (SPTDTs) were used at the same engine locations for the characterization of fuel- and oil-derived hydrocarbon (HC) fractions and required only 50 cc samples. High engine loads caused pushover of blowby vapors as indicated by increased concentrations of CO2, NOx, H2O(g), and fuel HCs in the engines' fresh air inlets during WOT operation. Peak concentrations of blowby vapors were measured in the crankcase under no load and part throttle conditions. Oxygen concentrations always opposed the trends of CO2, NOx, and H2O(g).
Technical Paper

Effect of Engine Operating Parameters on Hydrocarbon Oxidation in the Exhaust Port and Runner of a Spark-Ignited Engine

1995-02-01
950159
The effect of engine operating parameters (speed, spark timing, and fuel-air equivalence ratio [Φ]) on hydrocarbon (HC) oxidation within the cylinder and exhaust system is examined using propane or isooctane fuel. Quench gas (CO2) is introduced at two locations in the exhaust system (exhaust valve or port exit) to stop the oxidation process. Increasing the speed from 1500 to 2500 RPM at MBT spark timing decreases the total, cylinder-exit HC emissions by ∼50% while oxidation in the exhaust system remains at 40% for both fuels. For propane fuel at 1500 rpm, increasing Φ from 0.9 (fuel lean) to 1.1 (fuel rich) reduces oxidation in the exhaust system from 42% to 26%; at 2500 RPM, exhaust system oxidation decreases from 40% to approximately 0% for Φ = 0.9 and 1.1, respectively. Retarded spark increases oxidation in the cylinder and exhaust system for both fuels. Decreases in total HC emissions are accompanied by increased olefinic content and atmospheric reactivity.
Technical Paper

Compression Ratio and Coolant Temperature Effects on HC Emissions from a Spark- Ignition Engine

1995-02-01
950163
Modern four-valve engines are running at ever higher compression ratios in order to improve fuel efficiency. Hotter cylinder bores also can produce increased fuel economy by decreasing friction due to less viscous oil layers. In this study changes in compression ratio and coolant temperature were investigated to quantify their effect on exhaust emissions. Tests were run on a single cylinder research engine with a port-deactivated 4-valve combustion chamber. Two compression ratios (9.15:1 and 10.0:1) were studied at three air/fuel ratios (12.5, 14.6 and 16.5) at a part load condition (1500 rpm, 3.8 bar IMEP). The effect of coolant temperature (66 °C and 108°C) was studied at the higher compression ratio. The exhaust was sampled and analyzed for both total and speciated hydrocarbons. The speciation analysis provided concentration data for hydrocarbons present in the exhaust containing twelve or fewer carbon atoms.
Technical Paper

Underhood Thermal Management by Controlling Air Flow

1995-02-01
951013
A series of tests were conducted to determine the potential for reducing vehicle underhood temperatures by either 1) diverting the radiator fan air flow from the engine compartment or 2) by forced air cooling of the exhaust manifold in conjunction with shielding it or 3) by a combination of the two methods. The test vehicle was a Ford F-250 Light Truck with a 7.5L V-8 engine. The vehicle was tested in a dynamometer cell equipped with cell blowers to simulate road speed conditions. It was found that diverting the outlet air from the radiator will reduce underhood component temperatures when the vehicle is in motion and also at normal idle. However, if the vehicle is to be used for power takeoff applications requiring a “kicked” idle, then forced cooling of the exhaust manifolds is also required to maintain reduced underhood temperatures. A combination of these two techniques maximized the reduction of underhood temperatures for all operating conditions tested.
Technical Paper

The Effect of Vehicle Exhaust System Components on Flow Losses and Noise in Firing Spark-Ignition Engines

1995-05-01
951260
Sound attenuation and flow loss reduction are often two competing demands in vehicle breathing systems. The present study considers a full vehicle exhaust system and investigates both the sound attenuation and the flow performance of production configurations including the catalyst, the resonator, and the muffler. Dynamometer experiments have been conducted with a firing Ford 3.0L, V-6 engine at wide-open throttle with speeds ranging from 1000 to 5000 rpm. Measurements including the flow rates, the temperatures and the absolute dynamic pressures of the hot exhaust gases at key locations (upstream and downstream of every component) with fast-response, water-cooled piezo-resistive pressure transducers facilitate the calculation of acoustic performance of each component, as well as the determination of flow losses caused by these elements and their influence on the engine performance.
X