Refine Your Search

Topic

Author

Search Results

Viewing 1 to 17 of 17
Technical Paper

Optimized Layout of Gasoline Engines for Hybrid Powertrains

2008-01-09
2008-28-0024
Due to the complex powertrain layout in hybrid vehicles, different configurations concerning internal combustion engine, electric motor and transmission can be combined - as is demonstrated by currently produced hybrid vehicles ([1], [2]). At the Institute for Combustion Engines (VKA) at RWTH Aachen University a combination of simulation, Design of Experiments (DoE) and numerical optimization methods was used to optimize the combustion engine, the powertrain configuration and the operation strategy in hybrid powertrains. A parametric description allows a variation of the main hybrid parameters. Parallel as well as power-split hybrid powertrain configurations were optimized with regard to minimum fuel consumption in the New European Driving Cycle (NEDC). Besides the definition of the optimum configuration for engine, powertrain and operation strategy this approach offers the possibility to predict the fuel consumption for any modifications of the hybrid powertrains.
Technical Paper

Tailor-Made Fuels for Future Advanced Diesel Combustion Engines

2009-06-15
2009-01-1811
The finite nature and instability of fossil fuel supply has led to an increasing and enduring investigation demand of alternative and regenerative fuels. The Institute for Combustion Engines at the RWTH Aachen University carried out an investigation program to explore the potential of tailor made fuels to reduce engine-out emissions while maintaining engine efficiency and an acceptable noise level. To enable optimum engine performance a range of different hydrocarbons having different fuel properties like cetane number, boiling temperature and different molecular compositions have been investigated. Paraffines and naphthenes were selected in order to better understand the effects of molecular composition and chain length on emissions and performance of an engine that was already optimized for advanced combustion performance. The diesel single-cylinder research engine used in this study will be used to meet Euro 6 emissions limits and beyond.
Technical Paper

Catalyst Aging Method for Future Emissions Standard Requirements

2010-04-12
2010-01-1272
This paper describes an alternative catalyst aging process using a hot gas test stand for thermal aging. The solution presented is characterized by a burner technology that is combined with a combustion enhancement, which allows stoichiometric and rich operating conditions to simulate engine exhaust gases. The resulting efficiency was increased and the operation limits were broadened, compared to combustion engines that are typically used for catalyst aging. The primary modification that enabled this achievement was the recirculation of exhaust gas downstream from catalyst back to the burner. The burner allows the running simplified dynamic durability cycles, which are the standard bench cycle that is defined by the legislation as alternative aging procedure and the fuel shut-off simulation cycle ZDAKW. The hot gas test stand approach has been compared to the conventional engine test bench method.
Technical Paper

Acoustics of Hybrid Vehicles

2010-06-09
2010-01-1402
The technology used in hybrid vehicle concepts is significantly different from conventional vehicle technology with consequences also for the noise and vibration behavior. In conventional vehicles, certain noise phenomena are masked by the engine noise. In situations where the combustion engine is turned off in hybrid vehicle concepts, these noise components can become dominant and annoying. In hybrid concepts, the driving condition is often decoupled from the operation state of the combustion engine, which leads to unusual and unexpected acoustical behavior. New acoustic phenomena such as magnetic noise due to recuperation occur, caused by new components and driving conditions. The analysis of this recuperation noise by means of interior noise simulation shows, that it is not only induced by the powertrain radiation but also by the noise path via the powertrain mounts. The additional degrees of freedom of the hybrid drive train can also be used to improve the vibrational behavior.
Technical Paper

The Diesel Exhaust Aftertreatment (DEXA) Cluster: A Systematic Approach to Diesel Particulate Emission Control in Europe

2004-03-08
2004-01-0694
The DEXA Cluster consisted of three closely interlinked projects. In 2003 the DEXA Cluster concluded by demonstrating the successful development of critical technologies for Diesel exhaust particulate after-treatment, without adverse effects on NOx emissions and maintaining the fuel economy advantages of the Diesel engine well beyond the EURO IV (2000) emission standards horizon. In the present paper the most important results of the DEXA Cluster projects in the demonstration of advanced particulate control technologies, the development of a simulation toolkit for the design of diesel exhaust after-treatment systems and the development of novel particulate characterization methodologies, are presented. The motivation for the DEXA Cluster research was to increase the market competitiveness of diesel engine powertrains for passenger cars worldwide, and to accelerate the adoption of particulate control technology.
Technical Paper

Vehicle Application of a 4-Cylinder Tumble DISI Engine

2001-03-05
2001-01-0735
SI engines with gasoline direct injection are currently the focus of development for almost all car manufacturers. After the introduction of DISI engines, first to the Japanese market and after a short time delay also in Europe, a broad variety of technical solutions for efficient stratified concepts can be stated. The targets of the development activities in this field are defined by legislation and customer's demands. The potential reduction of fuel consumption with stratified operation has to be combined with a further improvement of the full load potential of the DISI engine. A substantial part of the development activities are the fulfillment of current and future emission standards. Therefore, in order to realize a highly efficient lean operation, new technologies and strategies in the field of exhaust gas aftertreatment and vehicle application are required.
Technical Paper

The Impact of new Technologies and Tools on the Vehicle and Engine Development Process

2001-03-05
2001-01-0771
Technological progress opens the door for the development of new tools to be used for the development of vehicles and engines. This offers the opportunity for an optimization of the entire workflow on one hand, and an improvement of single tasks on the other hand. This paper describes the actual status of the development process, describes new directions of tool evolvement and finally gives an outlook into the future. Redline ADAPT-SIM is a tool for driver- and vehicle simulation, which was developed primarily for ECU application, but can also be used for other dynamic testing tasks. The introduction of this tool leads to better controllability and therefore also repeatability of tests.
Technical Paper

A Modern Approach to Face Current and Future Testing Needs as Part of the Entire Development Process for Vehicles and Engines

2003-03-03
2003-01-1026
Nowadays lead times and quality demands for the development of entire vehicles, or components for them, require new methods, which must be supported by new tools. This paper describes the key demands to modern test cell equipment as well as solutions for the area of test cell management systems. An outlook to the evolution of the way of testing and the role of a test cell in the entire development process is given to discuss the needs and possible solutions of the future.
Technical Paper

Accelerated Powertrain Development Through Model Based Calibration

2006-04-03
2006-01-0858
Modern powertrain development is targeting to meet challenging, to some degrees contradictory development goals in a short timeframe. Looking to a development time schedule of 36 months from concept to SOP, it becomes a prerequisite that unnecessary design loops have to be avoided by all means. Now, in addition, the experimental development work has to be conducted more efficiently than in the past. In recent years methods for an efficient design process have been successfully applied. Testing and vehicle application work can take advantage of methods empowered by model based approaches. Today, models with different levels of detail are able to significantly improve nearly every development phase. Supported by standardized and automated test bench and vehicle procedures an efficient and comprehensive development process can be established and utilized, which is also necessary to tackle growing complexity.
Technical Paper

Fleet Economics Analysis-CleanFleet Alternative Fuels Project

1995-02-01
950395
Economics is one of several key factors that must be considered by fleet operators and other decision makers as they move towards initiating or increasing the use of various alternative fuels in their fleet applications. Accordingly, the CleanFleet demonstration project was structured to generate and present a full set of comparable cost information for several of the leading alternative fuels. The cost information included the costs to acquire and modify vehicles, personnel training, facility modifications, capital and operating costs for fueling stations, and vehicle operating costs. These costs were used as the starting point for an analysis of the costs that a fleet operator might face in the 1996 time frame for implementing the use of compressed natural gas, propane gas, Phase 2 reformulated gasoline, or methanol (M-85). The cost estimates were incorporated into a popular spread-sheet used on personal computers to facilitate examining various options available to fleets.
Technical Paper

Dynamic Vehicle Simulation to Evaluate Countermeasure Systems for Run-Off-Road Crashes

1996-02-01
960517
An important part of ITS (Intelligent Transportation Systems, formerly IVHS) is the development of collision avoidance systems. These systems continuously sense the dynamic state of the vehicle and the roadway situation, and they assess the potential for a collision. When the system determines that an emergency situation might be developing, it warns the driver to take evasive action. Such countermeasure systems must be subjected to rigorous testing to ensure reasonable performance in all foreseeable circumstances and effectiveness in reducing the incidence of collisions. The efficiency and safety of testing can be greatly enhanced by using a dynamic simulation of a vehicle in near-collision situations and “equipping” the vehicle with a proposed collision avoidance system. This paper discusses the development and application of a time-domain simulation code based on a dynamic model of the driver/vehicle/counter-measure system.
Technical Paper

Survey of Potential Safety Issues with Hydrogen-Powered Vehicles

2006-04-03
2006-01-0327
Hydrogen-powered vehicles offer the promise of significantly reducing the amount of pollutants that are expelled into the environment on a daily basis by conventional hydrocarbon-fueled vehicles. While very promising from an environmental viewpoint, the technology and systems that are needed to store the hydrogen (H2) fuel onboard and deliver it to the propulsion system are different from what consumers, mechanics, fire safety personnel, the public, and even engineers currently know and understand. As the number of hydrogen vehicles increases, the likelihood of a rollover or collision of one of these vehicles with another vehicle or a barrier will also increase.
Technical Paper

Experimental Approach to Optimize Catalyst Flow Uniformity

2000-03-06
2000-01-0865
A uniform flow distribution at converter inlet is one of the fundamental requirements to meet high catalytic efficiency. Commonly used tools for optimization of the inlet flow distribution are flow measurements as well as CFD analysis. This paper puts emphasis on the experimental procedures and results. The interaction of flow measurements and CFD is outlined. The exhaust gas flow is transient, compressible and hot, making in-situ flow measurements very complex. On the other hand, to utilize the advantages of flow testing at steady-state and cold conditions the significance of these results has to be verified first. CFD analysis under different boundary conditions prove that - in a first approach - the flow situation can be regarded as a sequence of successive, steady-state situations. Using the Reynolds analogy a formula for the steady-state, cold test mass flow is derived, taking into account the cylinder displacement and the rated speed.
Technical Paper

IVHS~Ohio: A state initiative

1994-04-17
1994-16-0009
The state of Ohio has recognized the importance and potential impact of Intelligent Vehicle-Highway Systems (IVHS) to its citizens and business enterprises. In response to the identified need, a small group of individuals representing Federal and state government, academia, and the private sector have worked together over the past year to initiate a statewide IVHS effort. This initiative is referred to as IVHS~Ohio. The objective of the effort is to "coordinate and foster a public, private, and academic partnership to make the urban and rural surface transportation system in the state of Ohio significantly safer, more effective, and more efficient by accelerating the identification, development, integration, and deployment of IVHS technologies." A May 1993 symposium was attended by over 220 people from government, academia, and the private sector. The result was a unanimous decision to establish a statewide IVHS program.
Technical Paper

Incorporating Weld Residual Stress Effects into Fatigue Life Predictions using the Battelle Structural Stress Method

2018-04-03
2018-01-1212
Welding induced residual stresses are an important factor to consider when evaluating fatigue design of welded automotive parts. Fortunately, design engineers have various residual stress mitigation technologies at their disposal for improving the fatigue performance of these parts. For this purpose, it is essential to understand the relationship between the residual stresses and fatigue performance quantitatively as well as qualitatively. It has been widely accepted that tensile residual stresses in welded structures are as high as the material yield strength level. Therefore, the fatigue strength of welded joints is governed predominantly by the applied stress range, regardless of the load ratio. However, in stress relieved components the tensile residual stress level is not as high, and the weld fatigue behavior is more influenced by the load ratio.
Technical Paper

Future of Combustion Engines

2006-10-16
2006-21-0024
Increasing shortages of energy resources as well as emission legislation is increasing the pressure to develop more efficient, environmentally friendly propulsion systems for vehicles. Due to its more than 125 years of history with permanent improvements, the internal combustion engine (ICE) has reached a very high development status in terms of efficiency and emissions, but also drivability, handling and comfort. Therefore, the IC engine will be the dominant propulsion system for future generations. This paper gives a survey on the present technical status and future prospects of internal combustion engines, both CI and SI engines, also including alternative fuels. In addition a brief overview of the potential of currently intensely discussed hybrid concepts is given.
Book

The System Integration Process for Accelerated Development

2002-10-31
System Integration Process for Accelerated Development explains how the integration of simultaneous engineering processes into the higher-level strategic business process can help accelerate the conversion of an idea into a finished product, resulting in a competitive advantage.
X