Refine Your Search

Search Results

Viewing 1 to 13 of 13
Journal Article

Functional Requirements to Exceed the 100 kW/l Milestone for High Power Density Automotive Diesel Engines

2017-09-04
2017-24-0072
The paper describes the challenges and results achieved in developing a new high-speed Diesel combustion system capable of exceeding the imaginative threshold of 100 kW/l. High-performance, state-of-art prototype components from automotive diesel technology were provided in order to set-up a single-cylinder research engine demonstrator. Key design parameters were identified in terms boost, engine speed, fuel injection pressure and injector nozzle flow rates. In this regard, an advanced piezo injection system capable of 3000 bar of maximum injection pressure was selected, coupled to a robust base engine featuring ω-shaped combustion bowl and low swirl intake ports. The matching among the above-described elements has been thoroughly examined and experimentally parameterized.
Technical Paper

Improvement of an LS-DYNA Fuel Delivery Module (FDM) Crash Simulation

2008-04-14
2008-01-0253
This paper proposes and evaluates improvements to a crash simulation of a fuel delivery module in a fuel tank. The simulations were performed in ANSYS/LS-DYNA. Deviations between the original simulation and test data were studied and reasons for the deviations hypothesized. These reasons stemmed from some of the simplifying assumptions of the model. Improvements consisted of incorporating plasticity and strain rate effects into the material models. Performance criteria were also directly incorporated into the material models such that non-performing portions of the model could be deactivated during the simulation. Finally, solid-fluid interactions were added into the simulation to include the momentum transfer from fuel to the fuel delivery module. It was previously thought that effects of a crash would be most severe on the module when the fuel tank was empty and the module was full with fuel.
Technical Paper

Particle Image Velocimetry Measurements of a Diesel Spray

2008-04-14
2008-01-0942
The current study was focused on flow field measurements of diesel sprays. The global fuel spray characteristics, such as spray penetration, have also been measured. Particle Image Velocimetry (PIV) was utilized for flow field measurements and the global spray characteristics were recorded with high-speed back light photographing. The flow field was scanned to get an idea of the compatibility of PIV technique applied to dense and high velocity sprays. It is well proven that the PIV technique can be utilized at areas of low number density of droplets, but the center of the spray is way beyond the ideal PIV measurement conditions. The depth at which accurate flow field information can be gathered was paid attention to.
Technical Paper

Diesel Spray Simulation and KH-RT Wave Model

2003-10-27
2003-01-3231
This study presents diesel spray breakup regimes and the wave model basic theory from literature. The RD wave model and the KH-RT wave model are explained. The implementation of the KH-RT wave model in a commercial CFD code is briefly presented. This study relies on experimental data from non-evaporating sprays that have earlier been measured at Helsinki University of Technology. The simulated fuel spray in a medium-speed diesel engine had a satisfactory match with the experimental data. The KH-RT wave model resulted in a much faster drop breakup than with the RD wave model. This resulted in a thin spray core with the KH-RT model. The fuel viscosity effect on drop sizes was well predicted by the KH-RT wave model.
Technical Paper

Evaluation of the Ignition Hazard Posed by Onboard Refueling Vapor Recovery Canisters

2001-03-05
2001-01-0731
ORVR (Onboard Refueling Vapor Recovery) canisters trap vapors during normal operations of a vehicle's engine, and during refueling. This study evaluates the relative risks involved should a canister rupture in a crash. A canister impactor was developed to simulate real-world impacts and to evaluate the canisters' rupture characteristics. Numerous performance aspects of canisters were evaluated: the energy required to rupture a canister; the spread of carbon particles following rupture; the ease of ignition of vapor-laden particles; the vapor concentration in the area of ruptured, vapor-laden canisters; and the potential of crashes to rupture and ignite canisters. Results from these five items were combined into a risk analysis.
Technical Paper

Simulation of Diesel Engines Cold-Start

2003-03-03
2003-01-0080
Diesel engine cold-start problems include long cranking periods, hesitation and white smoke emissions. A better understanding of these problems is essential to improve diesel engine cold-start. In this study computer simulation model is developed for the steady state and transient cold starting processes in a single-cylinder naturally aspirated direct injection diesel engine. The model is verified experimentally and utilized to determine the key parameters that affect the cranking period and combustion instability after the engine starts. The behavior of the fuel spray before and after it impinges on the combustion chamber walls was analyzed in each cycle during the cold-start operation. The analysis indicated that the accumulated fuel in combustion chamber has a major impact on engine cold starting through increasing engine compression pressure and temperature and increasing fuel vapor concentration in the combustion chamber during the ignition delay period.
Technical Paper

Cylinder Charge, Initial Flow Field and Fuel Injection Boundary Condition in the Multidimensional Modeling of Combustion in Compression Ignition Engines

2004-10-25
2004-01-2963
Cylinder charge, cylinder flow field and fuel injection play the dominant roles in controlling combustion in compression ignition engines. Respective computational cylinder charge, initial flow field and fuel injection boundary affect combustion simulation and the quality of emission prediction. In this study the means of generating the initial values and boundary data are presented and the effect of different methods is discussed. This study deals with three different compression ignition engines with cylinder diameters of 111, 200 and 460 mm. The initial cylinder charge has been carefully analyzed through gas exchange pressure recordings and corresponding 1-dimensional simulation. The swirl generated by intake ports in a high-speed engine is simulated and measured. The combustion simulation using a whole cylinder model was compared with a sector model simulation result.
Technical Paper

Gaseous Hydrogen Station Test Apparatus: Verification of Hydrogen Dispenser Performance Utilizing Vehicle Representative Test Cylinders

2005-04-11
2005-01-0002
The paper includes the development steps used in creating a station test apparatus (STA) and a description of the apparatus design. The purpose of this device is to simulate hydrogen vehicle conditions for the verification of gaseous hydrogen refueling station dispenser performance targets and hydrogen quality. This is done at the refueling station/vehicle interface (i.e. the refueling nozzle.) In addition, the device is to serve as a means for testing and developing future advanced fueling algorithms and protocols. The device is to be outfitted with vehicle representative container cylinders and sensors located inside and outside the apparatus to monitor refueling rate, ambient and internal gas temperature, pressure and weight of fuel transferred. Data is to be recorded during refueling and graphed automatically.
Technical Paper

A Rational Approach to Qualifying Materials for Use in Fuel Systems

2000-06-19
2000-01-2013
About 10 years ago in the US, an automotive OEM consortium formed the Oxygenated Fuels Task Force which in turn created the SAE Cooperative Research Project Group 2 to develop a simple rational method for qualifying materials. At that time the focus was Methanol/Gasoline blends. This work resulted in SAE J1681, Gasoline/Methanol Mixtures for Materials Testing. Recently this document was rewritten to make it the single, worldwide, generic source for fuel system test fluids. The paper will describe the rationale for selecting the fuel surrogate fluids and why this new SAE standard should replace all existing test fuel or test fluid standards for fuel system materials testing.
Technical Paper

An Optical and Numerical Characterization of Directly Injected Compressed Natural Gas Jet Development at Engine-Relevant Conditions

2019-04-02
2019-01-0294
Compressed natural gas (CNG) is an attractive, alternative fuel for spark-ignited (SI), internal combustion (IC) engines due to its high octane rating, and low energy-specific CO2 emissions compared with gasoline. Directly-injected (DI) CNG in SI engines has the potential to dramatically decrease vehicles’ carbon emissions; however, optimization of DI CNG fueling systems requires a thorough understanding of the behavior of CNG jets in an engine environment. This paper therefore presents an experimental and modeling study of DI gaseous jets, using methane as a surrogate for CNG. Experiments are conducted in a non-reacting, constant volume chamber (CVC) using prototype injector hardware at conditions relevant to modern DI engines. The schlieren imaging technique is employed to investigate how the extent of methane jets is impacted by changing thermodynamic conditions in the fuel rail and chamber.
Technical Paper

Optical In-Cylinder Measurements of a Large-Bore Medium-Speed Diesel Engine

2008-10-06
2008-01-2477
The objective of this study was to build up an optical access into a large bore medium-speed research engine and carry out the first fuel spray Particle Image Velocimetry (PIV) measurements in the running large bore medium-speed engine in high pressure environment. The aim was also to measure spray penetration with same optical access and apparatus. The measurements were performed in a single-cylinder large bore medium-speed research engine, the Extreme Value Engine (EVE) with optical access into the combustion chamber. The authors are not aware of any other studies on optical spray measurements in large bore medium-speed diesel engines. Successful optical measurements of the fuel spray penetration and the velocity fields were carried out. This confirms that the exceptional component design and laser sheet alignment used in this study proved to be valid for optical fuel spray measurements in large-bore medium-speed diesel engines.
Journal Article

Balancing Hydraulic Flow and Fuel Injection Parameters for Low-Emission and High-Efficiency Automotive Diesel Engines

2019-09-09
2019-24-0111
The introduction of new light-duty vehicle emission limits to comply under real driving conditions (RDE) is pushing the diesel engine manufacturers to identify and improve the technologies and strategies for further emission reduction. The latest technology advancements on the after-treatment systems have permitted to achieve very low emission conformity factors over the RDE, and therefore, the biggest challenge of the diesel engine development is maintaining its competitiveness in the trade-off “CO2-system cost” in comparison to other propulsion systems. In this regard, diesel engines can continue to play an important role, in the short-medium term, to enable cost-effective compliance of CO2-fleet emission targets, either in conventional or hybrid propulsion systems configuration. This is especially true for large-size cars, SUVs and light commercial vehicles.
Journal Article

Hydrotreated Vegetable Oil (HVO) as a Renewable Diesel Fuel: Trade-off between NOx, Particulate Emission, and Fuel Consumption of a Heavy Duty Engine

2008-10-06
2008-01-2500
Hydrotreating of vegetable oils or animal fats is an alternative process to esterification for producing biobased diesel fuels. Hydrotreated products are also called renewable diesel fuels. Hydrotreated vegetable oils (HVO) do not have the detrimental effects of ester-type biodiesel fuels, like increased NOx emission, deposit formation, storage stability problems, more rapid aging of engine oil or poor cold properties. HVOs are straight chain paraffinic hydrocarbons that are free of aromatics, oxygen and sulfur and have high cetane numbers. In this paper, NOx - particulate emission trade-off and NOx - fuel consumption trade-off are studied using different fuel injection timings in a turbocharged charge air cooled common rail heavy duty diesel engine. Tested fuels were sulfur free diesel fuel, neat HVO, and a 30% HVO + 70% diesel fuel blend. The study shows that there is potential for optimizing engine settings together with enhanced fuel composition.
X