Refine Your Search

Topic

Author

Search Results

Journal Article

Lab Evaluation and Comparison of Corrosion Performance of Mg Alloys

2010-04-12
2010-01-0728
More Mg alloys are being considered for uses in the automotive industry. Since the corrosion performance of Mg alloy components in practical service environments is unknown, long term corrosion testing at automotive proving grounds will be an essential step before Mg alloy components can be implemented in vehicles. However, testing so many Mg alloy candidates for various parts is labor intensive for the corrosion engineers at the proving grounds. This report presents preliminary results in evaluating corrosion performance of Mg alloys based on rapid corrosion and electrochemical tests in the lab. In this study, four Mg alloy candidates for transmission cases and oil pans: AE44, AXJ530, MRI153M and MRI230D were tested in the lab and at General Motors Corporation Milford Proving Ground and their corrosion results were compared.
Journal Article

Advancement in Vehicle Development Using the Auto Transfer Path Analysis

2014-04-01
2014-01-0379
This paper presents the most recent advancement in the vehicle development process using the one-step or auto Transfer Path Analysis (TPA) in conjunction with the superelement, component mode synthesis, and automated multi-level substructuring techniques. The goal is to identify the possible ways of energy transfer from the various sources of excitation through numerous interfaces to given target locations. The full vehicle model, consists of superelements, has been validated with the detailed system model for all loadcases. The forces/loads can be from rotating components, powertrain, transfer case, chain drives, pumps, prop-shaft, differential, tire-wheel unbalance, road input, etc., and the receiver can be at driver/passenger ears, steering column/wheel, seats, etc. The traditional TPA involves two solver runs, and can be fairly complex to setup in order to ensure that the results from the two runs are consistent with subcases properly labeled as input to the TPA utility.
Journal Article

General Motors Rear Wheel Drive Eight Speed Automatic Transmission

2014-04-01
2014-01-1721
General Motors shall introduce a new rear wheel drive eight speed automatic transmission, known as the 8L90, in the 2015 Chevrolet Corvette. The rated turbine torque capacity is 1000 Nm. This transmission replaces the venerable 6L80 six speed automatic. The objectives behind creation of this transmission are improved fuel economy, performance, and NVH. Packaging in the existing vehicle architecture and high mileage dependability are the givens. The architecture is required to offer low cost for a rear drive eight speed transmission while meeting the givens and objectives. An eight speed powerflow, invented by General Motors, was selected. This powerflow yields a 7.0 overall ratio spread, enabling improved launch capability because of a deeper first gear ratio and better fuel economy due to lower top gear N/V capability, relative to the 6L80. The eight speed ratios are generated using four simple planetary gearsets, two brake clutches, and three rotating clutches.
Journal Article

A Two Degree of Freedom, Lumped Inertia Model for Automatic Transmission Clutch-to-Clutch Shift Dynamics

2014-04-01
2014-01-1782
This paper presents a methodology to represent automatic transmission clutch-to-clutch shift dynamics with a two degree of freedom, lumped inertia model. The method of reducing the automatic transmission to a lumped, two inertia model as a function of shift and input shaft acceleration is detailed using a full kinematic representation of the automatic transmission. For a given clutch-to-clutch shift maneuver there are two dependent equations that utilize the two lumped inertias and represent the response of the transmission system from input to output shaft. Applicability of the method is shown for planetary automatic and layshaft dual clutch transmissions. Typical clutch-to-clutch shift maneuvers are illustrated with the two inertia model for power on upshifts and downshifts.
Journal Article

Analytical Study of a Dog Clutch in Automatic Transmission Application

2014-04-01
2014-01-1775
A dog clutch, if successfully implemented in an automatic transmission, provides better packaging and the potential for improved fuel economy. The technical requirements for this concept are examined through modeling and simulation. As a first step, a physics-based component level model is developed that provides an understanding of the basic contact and impact dynamics. The model is compared to a built-in AMESim block to establish confidence. This component level model is then integrated into a powertrain system model within the AMESim environment. As a test bed, the powertrain model is exercised to simulate a friction plate to dog clutch shift in a 6-speed automatic transmission. The analysis helps to define the slip speed target at the onset of the dog clutch engagement while ensuring shift requirements are met. Finally, the model is validated by comparing the simulated results with measured dynamometer data.
Journal Article

A DFSS Approach to Determine Automatic Transmission Gearing Content for Powertrain-Vehicle System Integration

2014-04-01
2014-01-1774
This investigation utilizes a DFSS analysis approach to determine automatic transmission gear content required to minimize fuel consumption for various powertrain - vehicle systems. L18 and L27 inner arrays with automatic transmission design and shift pattern constraint parameters were varied to determine their relative influence on fuel consumption. An outer noise array consisting of two vehicles with various engines, final drive ratios and legislated emissions test cycles was used to make a robust transmission selection based on minimizing fuel consumption. The full details of the DFSS analysis method and assumptions are presented along with a detailed examination of the results. With respect to transmission design parameters, parasitic spinloss and gear mesh efficiency were found to be most important followed by the number of gears. The DFSS analysis further revealed that unique transmission design formulations are potentially required for widely varying engines.
Journal Article

Design Optimization, Development and Manufacturing of General Motors New Battery Electric Vehicle Drive Unit (1ET35)

2014-04-01
2014-01-1806
The General Motors (GM) 1ET35 drive unit is designed for an optimum combination of efficiency, performance, reliability, and cost as part of the propulsion system for the 2014 Chevrolet Spark Electric Vehicle (EV) [1]. The 1ET35 drive unit is a coaxial transaxle arrangement which includes a permanent-magnet (PM) electric motor and a low loss single-planetary transmission and is the sole source of propulsion for the battery-only electric vehicle (BEV) Spark. The 1ET35 is designed with experience gained from the first modern production BEV, the 1996 GM EV1. This paper describes the design optimization and development of the 1ET35 and its electric motor that will be made in the United States by GM. The high torque density electric motor design is based on high-energy permanent magnets that were originally developed by GM in connection with the EV1 and GM bar-wound stator technology introduced in the 2Mode Hybrid electric transmission, used in the Chevrolet Volt and in GM eAssist systems.
Journal Article

Lightweight Acoustic System Performance Target Setting Process

2013-05-13
2013-01-1982
In the vehicle development process, one important step is to set a component performance target from the vehicle level performance. Conventional barrier-decoupler dash mats and floor trim underlayment systems typically provide sound transmission loss (STL) with minimal absorption. Thus the performance of such components can be relatively easily specified as either STL or Insertion Loss. Lightweight dissipative or multi-layered acoustic materials provide both STL and significant absorption. The net performance is a combination of two parameters instead of one. The target for such components needs to account for this combined effect, however different suppliers use unique formulations and manufacturing methods, so it is difficult and time consuming to judge one formulation against another. In this paper, a unique process is presented to set a component target as a combined effect of STL and absorption.
Journal Article

Performance Characterization of Automatic Transmission Upshifts with Reduced Shift Times

2015-04-14
2015-01-1086
As the number of fixed gear ratios in automatic transmissions continues to increase in the pursuit of powertrain system efficiency, particular consideration must continue to be focused on optimizing the design for shifting performance. This investigation focuses on the effect of shift time on the performance attributes of shift quality, durability, on schedule fuel consumption and enablers to further reduce shift time. A review of fundamental design features that enable reduced shift times in both planetary and dual clutch transmissions is presented along with key operating features of both the transmission and engine/prime mover. A lumped parameter metric is proposed to assess and compare the upshift controllability of new transmission architectures and powerflows using simple analysis. The durability of fast shift times during performance maneuvers are quantified through calculation of shifting clutch energy and power from analysis and form measurements on a powertrain dynamometer.
Journal Article

Automatic Transmission Gear Ratio Optimization and Monte Carlo Simulation of Fuel Consumption with Parasitic Loss Uncertainty

2015-04-14
2015-01-1145
This investigation utilizes energy analysis and statistical methods to optimize step gear automatic transmissions gear selection for fuel consumption. A full factorial matrix of simulations using energy analysis was performed to determine the optimal number of gears and gear ratios that provide the best fuel consumption performance for a particular vehicle - engine application. The full factorial matrix setup as a design of experiment (DOE) was applied to five vehicle applications, each with two engines to examine the potential differences that variations in road load and engine characteristics might have on optimal transmission gearing selection. The transmission gearing options considered in the DOE were number of gears, launch gear ratio and top gear ratio. Final drive ratio was also included due to its global influence on vehicle performance and powertrain operating speeds and torque.
Journal Article

Transmission Dynamic Modeling and Parametric NVH Analysis

2015-04-14
2015-01-1147
A new approach for modeling and analysis of a transmission and driveline system is proposed. By considering the stiffness, damping and inertias, model equations based on lumped parameters can be created through standard Lagrangian Mechanics techniques. A sensitivity analysis method has then been proposed on the eigenspace of the system characteristic equation to reveal the dynamic nature of a transmission and driveline system. The relative sensitivity calculated can clearly show the vibration modes of the system and the key contributing components. The usefulness of the method is demonstrated through the GM 6-speed RWD transmission by analyzing the dynamic nature of the driveline system. The results can provide a fundamental explanation of the vibration issue experienced and the solution adopted for the transmission.
Journal Article

General Motors Front Wheel Drive Seven Speed Dry Dual Clutch Automatic Transmission

2015-04-14
2015-01-1093
General Motors has introduced a new front wheel drive seven speed dry dual clutch automatic transmission in 2014. The 250 Nm input torque rated gear box was designed and engineered for a global market in both front wheel drive and all-wheel drive configurations. The transmission has integrated start/stop capability enabled by the use of an electric motor driven pump and a pressurized accumulator. The architecture selected was chosen for optimization of packaging, fuel economy, mass, shift pleasability, and NVH. High mileage durability and world class drivability were the cornerstone deliverables during the engineering and design process Fuel efficiency is estimated to be 3% - 10% improvement over a conventional six speed automatic transmission. FWD variant wet mass of 78.1 kg was achieved through the rigorous engineering processes used to optimize the transmission system.
Journal Article

Chevrolet Volt Electric Utilization

2015-04-14
2015-01-1164
Evaluation of one year of in-use operating data from first generation Chevrolet Volt Extended-Range Electric Vehicle (E-REV) retail customers determined trip initial Internal Combustion Engine (ICE) starts were reduced by 70% relative to conventional vehicles under the same driving conditions. These Volt drivers were able to travel 74% of their total miles in EV without requiring the ICE's support. Using this first generation Volt data, performance of the second generation Volt is projected. The Southern California Association of Governments (SCAG) Regional Travel Survey (RTS) data set was also processed to make comparisons between realistic PHEV constraints and E-REV configurations. A Volt characteristic E-REV was found to provide up to 40 times more all-electric trips than a PHEV over the same data set.
Journal Article

Adjoint-Driven Aerodynamic Shape Optimization Based on a Combination of Steady State and Transient Flow Solutions

2016-04-05
2016-01-1599
Aerodynamic vehicle design improvements require flow simulation driven iterative shape changes. The 3-D flow field simulations (CFD analysis) are not explicitly descriptive in providing the direction for aerodynamic shape changes (reducing drag force or increasing the down-force). In recent times, aerodynamic shape optimization using the adjoint method has been gaining more attention in the automotive industry. The traditional DOE (Design of Experiment) optimization method based on the shape parameters requires a large number of CFD flow simulations for obtaining design sensitivities of these shape parameters. The large number of CFD flow simulations can be significantly reduced if the adjoint method is applied. The main purpose of the present study is to demonstrate and validate the adjoint method for vehicle aerodynamic shape improvements.
Journal Article

Experimental and Numerical Study of Flame Kernel Formation Processes of Propane-Air Mixture in a Pressurized Combustion Vessel

2016-04-05
2016-01-0696
Fuel lean combustion and exhaust gas dilution are known to increase the thermal efficiency and reduce NOx emissions. In this study, experiments are performed to understand the effect of equivalence ratio on flame kernel formation and flame propagation around the spark plug for different low turbulent velocities. A series of experiments are carried out for propane-air mixtures to simulate engine-like conditions. For these experiments, equivalence ratios of 0.7 and 0.9 are tested with 20 percent mass-based exhaust gas recirculation (EGR). Turbulence is generated by a shrouded fan design in the vicinity of J-spark plug. A closed loop feedback control system is used for the fan to generate a consistent flow field. The flow profile is characterized by using Particle Image Velocimetry (PIV) technique. High-speed Schlieren visualization is used for the spark formation and flame propagation.
Journal Article

Impact of a Diesel High Pressure Common Rail Fuel System and Onboard Vehicle Storage on B20 Biodiesel Blend Stability

2016-04-05
2016-01-0885
Adoption of high-pressure common-rail (HPCR) fuel systems, which subject diesel fuels to higher temperatures and pressures, has brought into question the veracity of ASTM International specifications for biodiesel and biodiesel blend oxidation stability, as well as the lack of any stability parameter for diesel fuel. A controlled experiment was developed to investigate the impact of a light-duty diesel HPCR fuel system on the stability of 20% biodiesel (B20) blends under conditions of intermittent use and long-term storage in a relatively hot and dry climate. B20 samples with Rancimat induction periods (IPs) near the current 6.0-hour minimum specification (6.5 hr) and roughly double the ASTM specification (13.5 hr) were prepared from a conventional diesel and a highly unsaturated biodiesel. Four 2011 model year Volkswagen Passats equipped with HPCR fuel injection systems were utilized: one on B0, two on B20-6.5 hr, and one on B20-13.5 hr.
Journal Article

Internal Combustion Engine - Automatic Transmission Matching for Next Generation Power Transfer Technology Development in Automotive Applications

2016-04-05
2016-01-1099
Development of the next generation internal combustion engines and automatic transmissions for automotive applications is a mandatory powertrain engineering activity required now and in the coming years to meet forthcoming global emissions regulations. This paper details a preliminary investigation into possible synergies for fuel consumption reduction considering emerging automotive technologies integrated into the next generation combustion engine and automatic transmission architectures. A range of hypothetical gasoline engines were created and paired with a generalized set of step gear automatic transmissions designed to meet the performance requirements of high volume longitudinal full size truck application. These designs were then run through a design of experiments orthogonal array for prediction of fuel consumption on the WLTP test schedule and stand still acceleration to 100 kph.
Technical Paper

Algorithm-in-the-Loop with Plant Model Simulation, Reusable Test Suite in Production Codes Verification and Controller Hardware-in-the-Loop Bench Testing

2010-04-12
2010-01-0367
In a math-based control algorithm design, model-based simulation and testing are very important as an integral part of design process. There are many advantages of using modeling and simulation in the algorithm design. In this paper, Algorithm-in-the-Loop and Hardware-in-the-Loop approaches are adopted for a transmission control algorithm development. A practical approach is introduced on how to test the control algorithms with a reliable plant (virtual engine, transmission, and vehicle) model in the closed-loop simulation. In using combination of open-loop and closed-loop simulations, various key behavior test cases are developed and documented for the success of control algorithms development. Secondly, the same test cases are reused and verified against the production codes, which are automatically generated from the math-based control algorithm models.
Technical Paper

Seal Cross-Section Design Automation and Optimization Using Isight

2016-04-05
2016-01-1397
New seal cross-section development is a very tedious and time consuming process if conventional analysis methods are used, as it is very difficult to predict the dimensions of the seal that will satisfy the sealing performance targets. In this study, a generic cross-section is defined and the design constraints are specified. Isight then runs the FEA model, utilizing a custom python script for post-processing. Isight then updates the dimensions of the seal and continues running analyses. Isight was run using two different design exploration techniques. The first was a design of experiments (DOE) to discover how the seal’s response varies with its dimensions. Then, after the analyst examined the results, Isight was run in optimization mode focusing on feasible design areas as determined from the DOE. Thus, after the initial model setup, the user can run the analyses in the background and only needs to interact with the program after Isight has determined a list of feasible designs.
Technical Paper

Electric Traction Motors for Cadillac CT6 Plugin Hybrid-Electric Vehicle

2016-04-05
2016-01-1220
The Cadillac CT6 plug-in hybrid electric vehicle (PHEV) power-split transmission architecture utilizes two motors. One is an induction motor type while the other is a permanent magnet AC (PMAC) motor type referred to as motor A and motor B respectively. Bar-wound stator construction is utilized for both motors. Induction motor-A winding is connected in delta and PMAC motor-B winding is connected in wye. Overall, the choice of induction for motor A and permanent magnet for motor B is well supported by the choice of hybrid system architecture and the relative usage profiles of the machines. This selection criteria along with the design optimization of electric motors, their electrical and thermal performances, as well as the noise, vibration, and harshness (NVH) performance are discussed in detail. It is absolutely crucial that high performance electric machines are coupled with high performance control algorithms to enable maximum system efficiency and performance.
X