Refine Your Search

Topic

Author

Search Results

Journal Article

Structural Optimization for Vehicle Dynamics Loadcases

2011-04-12
2011-01-0058
As mass reduction becomes an increasingly important enabler for fuel economy improvement, having a robust structural development process that can comprehend Vehicle Dynamics-specific requirements is correspondingly important. There is a correlation between the stiffness of the body structure and the performance of the vehicle when evaluated for ride and handling. However, an unconstrained approach to body stiffening will result in an overly-massive body structure. In this paper, the authors employ loads generated from simulation of quasi-static and dynamic vehicle events in ADAMS, and exercise structural finite element models to recover displacements and deflected shapes. In doing so, a quantitative basis for considering structural vehicle dynamics requirements can be established early in the design/development process.
Journal Article

Variable and Fixed Airflow for Vehicle Cooling

2011-04-12
2011-01-1340
This paper describes rationale for determining the apportionment of variable or ‘shuttered’ airflow and non-variable or static airflow through openings in the front of a vehicle as needed for vehicle cooling. Variable airflow can be achieved by means of a shutter system, which throttles airflow through the front end and into the Condenser, Radiator, and Fan Module, (CRFM). Shutters originated early in the history of the auto industry and acted as a thermostat [1]. They controlled airflow as opposed to coolant flow through the radiator. Two benefits that are realized today are aerodynamic and thermal gains, achieved by restricting unneeded cooling airflow. Other benefits exist and justify the use of shutters; however, there are also difficulties in both execution and practical use. This paper will focus on optimizing system performance and execution in terms of the two benefits of reduced aerodynamic drag and reduced mechanical drag through thermal control.
Journal Article

Fatigue Behavior and Life Prediction for Aluminum Castings in the Absence of Casting Flaws

2011-04-12
2011-01-0193
Cast aluminum alloys are increasingly used in cyclically loaded automotive structural applications for light weight and fuel economy. The fatigue resistance of aluminum castings strongly depends upon the presence of casting flaws and characteristics of microstructural constituents. The existence of casting flaws significantly reduces fatigue crack initiation life. In the absence of casting flaws, however, crack initiation occurs at the fatigue-sensitive microstructural constituents. Cracking and debonding of large silicon (Si) and Fe-rich intermetallic particles and crystallographic shearing from persistent slip bands in the aluminum matrix play an important role in crack initiation. This paper presents fatigue life models for aluminum castings free of casting flaws, which complement the fatigue life models for aluminum castings containing casting flaws published in [1].
Journal Article

Micro-Cooling/Heating Strategy for Energy Efficient HVAC System

2011-04-12
2011-01-0644
Energy efficient HVAC system is becoming increasingly important as higher Corporate Average Fuel Economy (CAFE) standards are required for future vehicle products. The present study is a preliminary attempt at designing energy efficient HVAC system by introducing localized heating/cooling concepts without compromising occupant thermal comfort. In order to achieve this goal of reduced energy consumption while maintaining thermal comfort it is imperative that we use an analytical model capable of predicting thermal comfort with reasonable accuracy in a non-homogenous enclosed thermal environment such as a vehicle's passenger cabin. This study will primarily focus on two aspects: (a) energy efficiency improvements in an HVAC system through micro-cooling/heating strategies and (b) validation of an analytical approach developed in GM that would support the above effort.
Journal Article

Boundary Condition Effect on the Correlation of an Acoustic Finite Element Passenger Compartment Model

2011-04-12
2011-01-0506
Three different acoustic finite element models of an automobile passenger compartment are developed and experimentally assessed. The three different models are a traditional model, an improved model, and an optimized model. The traditional model represents the passenger and trunk compartment cavities and the coupling between them through the rear seat cavity. The improved model includes traditional acoustic models of the passenger and trunk compartments, as well as equivalent-acoustic finite element models of the front and rear seats, parcel shelf, door volumes, instrument panel, and trunk wheel well volume. An optimized version of the improved acoustic model is developed by modifying the equivalent-acoustic properties. Modal analysis tests of a vehicle were conducted using loudspeaker excitation to identify the compartment cavity modes and sound pressure response to 500 Hz to assess the accuracy of the acoustic models.
Journal Article

Modeling of Residual Stresses in Quenched Cast Aluminum Components

2011-04-12
2011-01-0539
Cast aluminum alloys are normally quenched after solution treatment or solidification process to improve aging responses. Rapid quenching can lead to high residual stress and severe distortion which significantly affects dimension stability, functionality and particularly performance of the product. To simulate residual stress and distortion induced during quenching, a finite element based approach was developed by coupling an iterative zone-based transient heat transfer algorithm with material thermo-viscoplastic constitutive model. With the integrated models, the numeric predictions of residual stresses and distortion in the quenched aluminum castings are in a good agreement with experimental measurements.
Journal Article

Adjoint Method for Aerodynamic Shape Improvement in Comparison with Surface Pressure Gradient Method

2011-04-12
2011-01-0151
Understanding the flow characteristics and, especially, how the aerodynamic forces are influenced by the changes in the vehicle body shape, are very important in order to improve vehicle aerodynamics. One specific goal of aerodynamic shape optimization is to predict the local shape sensitivities for aerodynamic forces. The availability of a reliable and efficient sensitivity analysis method will help to reduce the number of design iterations and the aerodynamic development costs. Among various shape optimization methods, the Adjoint Method has received much attention as an efficient sensitivity analysis method for aerodynamic shape optimization because it allows the computation of sensitivity information for a large number of shape parameters simultaneously.
Journal Article

Design of Engine-Out Virtual NOx Sensor Using Neural Networks and Dynamic System Identification

2011-04-12
2011-01-0694
Fuel economy improvement and stringent emission regulations worldwide require advanced air charging and combustion technologies, such as low temperature combustion, PCCI or HCCI combustion. Furthermore, NOx aftertreatment systems, like Selective Catalyst Reduction (SCR) or lean NOx trap (LNT), are needed to reduce vehicle tailpipe emissions. The information on engine-out NOx emissions is essential for engine combustion optimization, for engine and aftertreatment system development, especially for those involving combustion optimization, system integration, control strategies, and for on-board diagnosis (OBD). A physical NOx sensor involves additional cost and requires on-board diagnostic algorithms to monitor the performance of the NOx sensor.
Journal Article

Thermal Mapping of an Automotive Rear Drive Axle

2011-04-12
2011-01-0718
In recent years, there has been a sustained effort by the automotive OEMs and suppliers to improve the vehicle driveline efficiency. This has been in response to customer demands for greater vehicle fuel economy and increasingly stringent government regulations. The automotive rear axle is one of the major sources of power loss in the driveline, and hence represents an area where power loss improvements can have a significant impact on overall vehicle fuel economy. Both the friction induced mechanical losses and the spin losses vary significantly with the operating temperature of the lubricant. Also, the preloads in the bearings can vary due to temperature fluctuations. The temperatures of the lubricant, the gear tooth contacting surfaces, and the bearing contact surfaces are critical to the overall axle performance in terms of power losses, fatigue life, and wear.
Journal Article

Co-Simulation of Multiple Software Packages for Model Based Control Development and Full Vehicle System Evaluation

2012-04-16
2012-01-0951
Recent advancements in simulation software and computational hardware make it realizable to simulate a full vehicle system comprised of multiple sub-models developed in different modeling languages. The so-called, co-simulation allows one to develop a control strategy and evaluate various aspects of a vehicle system, such as fuel efficiency and vehicle drivability, in a cost-effective manner. In order to study the feasibility of the synchronized parallel processing in co-simulation this paper presents two co-simulation frameworks for a complete vehicle system with multiple heterogeneous subsystem models. In the first approach, subsystem models are co-simulated in a serial configuration, and the same sub-models are co-simulated in a parallel configuration in the second approach.
Journal Article

Analysis of Various Operating Strategies for a Parallel-Hybrid Diesel Powertrain with a Belt Alternator Starter

2012-04-16
2012-01-1008
The sustainable use of energy and the reduction of pollutant emissions are main concerns of the automotive industry. In this context, Hybrid Electric Vehicles (HEVs) offer significant improvements in the efficiency of the propulsion system and allow advanced strategies to reduce pollutant and noise emissions. The paper presents the results of a simulation study that addresses the minimization of fuel consumption, NOx emissions and combustion noise of a medium-size passenger car. Such a vehicle has a parallel-hybrid diesel powertrain with a high-voltage belt alternator starter. The simulation reproduces real-driver behavior through a dynamic modeling approach and actuates an automatic power split between the Internal Combustion Engine (ICE) and the Electric Machine (EM). Typical characteristics of parallel hybrid technologies, such as Stop&Start, regenerative braking and electric power assistance, are implemented via an operating strategy that is based on the reduction of total losses.
Journal Article

Cabin Heating and Windshield Defrosting for Extended Range Electric, Pure Electric, & Plug-in Hybrid Vehicles

2012-04-16
2012-01-0121
Conventional HVAC systems adjust the position of a temperature door, to achieve a required air temperature discharged into the passenger compartment. Such systems are based upon the fact that a conventional (non-hybrid) vehicle's engine coolant temperature is controlled to a somewhat constant temperature, using an engine thermostat. Coolant flow rate through the cabin heater core varies as the engine speed changes. EREVs (Extended Range Electric Vehicles) & PHEVs (Plug-In Hybrid Electric Vehicles) have two key vehicle requirements: maximize EV (Electric Vehicle) range and maximize fuel economy when the engine is operating. In EV mode, there is no engine heat rejection and battery pack energy is consumed in order to provide heat to the passenger compartment, for windshield defrost/defog and occupant comfort. Energy consumption for cabin heating must be optimized, if one is to optimize vehicle EV range.
Journal Article

Development of a Standard Spin Loss Test Procedure for FWD-Based Power Transfer Units

2013-04-08
2013-01-0361
As vehicle fuel economy continues to grow in importance, the ability to accurately measure the level of efficiency on all driveline components is required. A standardized test procedure enables manufacturers and suppliers to measure component losses consistently and provides data to make comparisons. In addition, the procedure offers a reliable process to assess enablers for efficiency improvements. Previous published studies have outlined the development of a comprehensive test procedure to measure transfer case speed-dependent parasitic losses at key speed, load, and environmental conditions. This paper will take the same basic approach for the Power Transfer Units (PTUs) used on Front Wheel Drive (FWD) based All Wheel Drive (AWD) vehicles. Factors included in the assessment include single and multi-stage PTUs, fluid levels, break-in process, and temperature effects.
Journal Article

Optimal Torque Control for an Electric-Drive Vehicle with In-Wheel Motors: Implementation and Experiments

2013-04-08
2013-01-0674
This paper presents the implementation of an off-line optimized torque vectoring controller on an electric-drive vehicle with four in-wheel motors for driver assistance and handling performance enhancement. The controller takes vehicle longitudinal, lateral, and yaw acceleration signals as feedback using the concept of state-derivative feedback control. The objective of the controller is to optimally control the vehicle motion according to the driver commands. Reference signals are first calculated using a driver command interpreter to accurately interpret what the driver intends for the vehicle motion. The controller then adjusts the braking/throttle outputs based on discrepancy between the vehicle response and the interpreter command.
Journal Article

A Computational Method for Efficient Hub Offset Comparisons with Deflected-Disc Dampers

2013-04-08
2013-01-1357
With deflected-disc dampers, digressive force-velocity shapes are achieved via the combined effects of disc stack stiffness and hub-offset. The degree of digressiveness can be adjusted to alter vehicle performance by changing the proportion of these parameters. Optimizing this relationship can yield substantial vehicle performance improvements, but the time consuming iterative process of developing a new disc stack for each hub-offset discourages experimentation. To enable more efficient digressiveness comparisons, a regression-based computational method has been developed which converts disc stack stiffness from one hub-offset to other offsets directly, without iteration. Once an initial disc stack for one offset has been tuned by traditional methods, stacks for other offsets can be calculated that maintain overall damper control.
Journal Article

Design Optimization of Front Bumper System for Low Speed Impact Insurance Industry Impact Test using DFSS and CAE Analysis

2011-04-12
2011-01-0070
In 2006, the Insurance Institute for Highway Safety (IIHS) released a new Low Speed Bumper Test Protocol for passenger cars1. The new test protocol included the development of a deformable barrier that the vehicle would impact at low speeds. IIHS positioned the new barrier to improve correlation to low speed collisions in the field, and also to assess the ability of the bumper system to protect the vehicle from damage. The bumper system must stay engaged to the barrier to protect other vehicle components from damage. The challenge is to identify the bumper system design features that minimize additional cost and mass to keep engagement to the barrier. The results of the Design for Six Sigma analysis identified the design features that increase the stiffness of the bumper system enable it to stay engaged to the barrier and reduce the deflection.
Journal Article

Optimizing 12 Volt Start - Stop for Conventional Powertrains

2011-04-12
2011-01-0699
A cost effective means of achieving fuel economy gains in conventional powertrain is to utilize a 12 volt start/stop (S/S) system to turn the engine off and on during periods of vehicle idle. This paper presents powertrain integration issues specific to a 12 volt S/S system and the powertrain hardware content and calibration strategies required to execute a 12 volt S/S system for start ability, reduced noise and vibration (N&V) and vehicle launch. A correlated lumped parameter modeling methodology is used to determine engine startup profiles, starter hardware and intake cam park position requirements based upon vehicle level response to the startup event. Optimization of the engine startup is reported for a multitude of powertrain configurations, including transverse and longitudinal arrangements with manual, automatic and dual clutch transmissions.
Journal Article

Methods and Tools for Calculating the Flexibility of Automotive HW/SW Architectures

2012-04-16
2012-01-0005
To cope with the increasing number of advanced features (e.g., smart-phone integration and side-blind zone alert.) being deployed in vehicles, automotive manufacturers are designing flexible hardware architectures which can accommodate increasing feature content with as fewer as possible hardware changes so as to keep future costs down. In this paper, we propose a formal and quantitative definition of flexibility, a related methodology and a tool flow aimed at maximizing the flexibility of an automotive hardware architecture with respect to the features that are of greater importance to the designer. We define flexibility as the ability of an architecture to accommodate future changes in features with no changes in hardware (no addition/replacement of processors, buses, or memories). We utilize an optimization framework based on mixed integer linear programming (MILP) which computes the flexibility of the architecture while guaranteeing performance and safety requirements.
Journal Article

Energy Efficient HVAC System with Spot Cooling in an Automobile - Design and CFD Analysis

2012-04-16
2012-01-0641
Spot, or distributed, cooling and heating is an energy efficient way of delivering comfort to an occupant in the car. This paper describes an approach to distributed cooling in the vehicle. A two passenger CFD model of an SUV cabin was developed to obtain the solar and convective thermal loads on the vehicle, characterize the interior thermal environment and accurately evaluate the fluid-thermal environment around the occupants. The present paper focuses on the design and CFD analysis of the energy efficient HVAC system with spot cooling. The CFD model was validated with wind tunnel data for its overall accuracy. A baseline system with conventional HVAC air was first analyzed at mid and high ambient conditions. The airflow and cooling delivered to the driver and the passenger was calculated. Subsequently, spot cooling was analyzed in conjunction with a much lower conventional HVAC airflow.
X