Refine Your Search

Topic

Author

Search Results

Journal Article

Axial Crash Testing and Finite Element Modeling of A 12-Sided Steel Component

2010-04-12
2010-01-0379
To improve the energy absorption capacity of front-end structures during a vehicle crash, a novel 12-sided cross-section was developed and tested. Computer-aided engineering (CAE) studies showed superior axial crash performance of the 12-sided component over more conventional cross-sections. When produced from advanced high strength steels (AHSS), the 12-sided cross-section offers opportunities for significant mass-savings for crash energy absorbing components such as front or rear rails and crush tips. In this study, physical crash tests and CAE modeling were conducted on tapered 12-sided samples fabricated from AHSS. The effects of crash trigger holes, different steel grades and bake hardening on crash behavior were examined. Crash sensitivity was also studied by using two different part fabrication methods and two crash test methods. The 12-sided components showed regular folding mode and excellent energy absorption capacity in axial crash tests.
Journal Article

Modeling of Adaptive Energy Absorbing Steering Columns for Dynamic Impact Simulations

2014-04-01
2014-01-0802
The objective of this paper focused on the modeling of an adaptive energy absorbing steering column which is the first phase of a study to develop a modeling methodology for an advanced steering wheel and column assembly. Early steering column designs often consisted of a simple long steel rod connecting the steering wheel to the steering gear box. In frontal collisions, a single-piece design steering column would often be displaced toward the driver as a result of front-end crush. Over time, engineers recognized the need to reduce the chance that a steering column would be displaced toward the driver in a frontal crash. As a result, collapsible, detachable, and other energy absorbing steering columns emerged as safer steering column designs. The safety-enhanced construction of the steering columns, whether collapsible, detachable, or other types, absorb rather than transfer frontal impact energy.
Journal Article

Modeling of an Advanced Steering Wheel and Column Assembly for Frontal and Side Impact Simulations

2014-04-01
2014-01-0803
This paper presents the final phase of a study to develop the modeling methodology for an advanced steering assembly with a safety-enhanced steering wheel and an adaptive energy absorbing steering column. For passenger cars built before the 1960s, the steering column was designed to control vehicle direction with a simple rigid rod. In severe frontal crashes, this type of design would often be displaced rearward toward the driver due to front-end crush of the vehicle. Consequently, collapsible, detachable, and other energy absorbing steering columns emerged to address this type of kinematics. These safety-enhanced steering columns allow frontal impact energy to be absorbed by collapsing or breaking the steering columns, thus reducing the potential for rearward column movement in severe crashes. Recently, more advanced steering column designs have been developed that can adapt to different crash conditions including crash severity, occupant mass/size, seat position, and seatbelt usage.
Journal Article

Reliability and Safety/Integrity Analysis for Vehicle-to-Vehicle Wireless Communication

2011-04-12
2011-01-1045
Vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications are gaining increasing importance in automotive research and engineering domains. The novel communication scheme is targeted to improve driver safety (e.g., forward collision warnings) and comfort (e.g., routing to avoid congestion, automatic toll collection, etc.). Features exploiting these communication schemes are still in the early stages of research and development. However, growing attention to system wide infrastructure - in terms of OEM collaboration on interface standardization, protocol standardization, and government supported road/wireless infrastructure - will lead to popularity of such features in the future. This paper focuses on evaluating reliability and safety/integrity of data communicated over the wireless channels for early design verification. Analysis of a design can be done based on formal models, simulation, emulation, and testing.
Journal Article

Evaluation of Dynamic Roof Deformation in Rollover Crash Tests

2011-04-12
2011-01-1093
Although the measured amount of roof deformation associated with a given rollover crash test is often the residual or post test deformation, rollover crash test researchers are aware that roof deformation occurs dynamically throughout the rollover event with varying magnitude. The challenge to quantifying dynamic roof deformation has been the lack of a reliable method to measure and record the dynamic roof deformation during the rollover test. Researchers have explored various methods to measure dynamic roof deformation including the use of film analysis of external targets, accelerometers, string potentiometers, and 3D photogrammetry. This paper discusses a series of simulated curb trip rollover tests conducted to study and compare different methodologies to measure and record dynamic roof deformation.
Journal Article

Design Optimization of Front Bumper System for Low Speed Impact Insurance Industry Impact Test using DFSS and CAE Analysis

2011-04-12
2011-01-0070
In 2006, the Insurance Institute for Highway Safety (IIHS) released a new Low Speed Bumper Test Protocol for passenger cars1. The new test protocol included the development of a deformable barrier that the vehicle would impact at low speeds. IIHS positioned the new barrier to improve correlation to low speed collisions in the field, and also to assess the ability of the bumper system to protect the vehicle from damage. The bumper system must stay engaged to the barrier to protect other vehicle components from damage. The challenge is to identify the bumper system design features that minimize additional cost and mass to keep engagement to the barrier. The results of the Design for Six Sigma analysis identified the design features that increase the stiffness of the bumper system enable it to stay engaged to the barrier and reduce the deflection.
Technical Paper

NHTSA Passenger Car Side Impact Dynamic Test Procedure - Test-To-Test Variability Estimates

1991-02-01
910603
A highly controlled six-vehicle crash test program was conducted to provide an estimate of the test-to-test variability of the NHTSA-proposed passenger car dynamic side impact test procedure. The results of this program showed that the rear seat test dummy response measurements are especially sensitive to various parameters of the test procedure. This paper provides estimates of front and rear seated SID dummy response measurement variability in four-door, 1990 Ford Taurus vehicles. Conclusions and recommendations from this controlled crash test program are made to provide guidance to help reduce the test-to-test variability of the test dummy responses.
Technical Paper

Dummy Models for Crash Simulation in Finite Element Programs

1991-10-01
912912
The development of combined finite element and spring / rigid mass crash simulation dummy models for automotive applications is described. In order to better understand the crash phenomena and occupant kinematics during vehicle crashes, recent developments have been focused on the use of finite element techniques in the simulation of both structure and structure / dummy interactions. The combination of spring /rigid mass modeling and finite element technique is used to develop models of fiftieth percentile Hybrid III and Side impact Dummies in a finite element program (RADIOSS). In general, the dummies are modeled with rigid masses and joints with techniques similar to those used in Crash Victim Simulation programs like MADYMO and CAL3D. Only selected components, like the Hybrid III dummy thorax and the SID pelvis and jacket, are modeled with finite element shell and brick elements to improve dummy / restraint system and dummy / structure interaction responses.
Journal Article

Crash Performance Simulation of a Multilayer Thermoplastic Fuel Tank with Manufacturing and Assembly Consideration

2011-04-12
2011-01-0009
The modeling of plastic fuel tank systems for crash safety applications has been very challenging. The major challenges include the prediction of fuel sloshing in high speed impact conditions, the modeling of multilayer thermoplastic fuel tanks with post-forming (non-uniform) material properties, and the modeling of tank straps with pre-tensions. Extensive studies can be found in the literature to improve the prediction of fuel sloshing. However, little research had been conducted to model the post-forming fuel tank and to address the tension between the fuel tank and the tank straps for crash safety simulations. Hoping to help improve the modeling of fuel systems, the authors made the first attempt to tackle these major challenges all at once in this study by dividing the modeling of the fuel tank into eight stages. An ALE (Arbitrary Lagrangian-Eulerian) method was adopted to simulate the interaction between the fuel and the tank.
Technical Paper

In-Vehicle Ambient Condition Sensing Based on Wireless Internet Access

2010-04-12
2010-01-0461
Increasing electronics content, growing computing power, and proliferation of opportunities for information connectivity (through improved sensors, GPS, road and traffic information systems, wireless internet access, vehicle-to-vehicle communication, etc.) are technology trends which can significantly transform and impact future automotive vehicle's control and diagnostic strategies. One aspect of the increasing vehicle connectivity is access to ambient and road condition information, such as ambient temperature, ambient pressure, humidity, % cloudiness, visibility, cloud ceiling, precipitation, rain droplet size, wind speed, and wind direction based on wireless internet access. The paper discusses the potential opportunities made available through wireless communication between the vehicle and the internet.
Technical Paper

An Assessment of Vehicle Side-Window Defrosting and Demisting Process

2001-03-05
2001-01-0289
The thermal comfort of passengers within a vehicle is often the main objective for the climate control engineer; however, the need to maintain adequate visibility through the front and side windows of a vehicle is a critical aspect of safe driving. This paper compares the performance of the side window defrosting and demisting mechanism of several current model vehicles. The study highlights the drawbacks of current designs and points the way to improved passive defrosting mechanisms. The investigation is experimental and computational. The experiments are carried out using full-scale current vehicle models. The computational study, which is validated by the experiments, is used to perform parametric investigation into the side window defrosters performance. The results show that the current designs of the side-defroster nozzles give maximum airflow rates in the vicinity of the lower part of the window, which yields unsatisfactory visibility.
Technical Paper

Finite element simulation of drive shaft in truck/SUV frontal crash

2001-06-04
2001-06-0106
Drive shaft modelling effects frontal crash finite element simulation. A 35 mph rigid barrier impact of a body on frame SUV with an one piece drive shaft and a unibody SUV with a two piece drive shaft have been studied and simulated using finite element analyses. In the model, the drive shaft can take significant load in frontal impact crash. Assumptions regarding the drive shaft model can change the predicted engine motion in the simulation. This change influences the rocker @ B-pillar deceleration. Two modelling methods have been investigated in this study considering both joint mechanisms and material failure in dynamic impact. Model parameters for joint behavior and failure should be determined from vehicle design information and component testing. A body on frame SUV FEA model has been used to validate the drive shaft modeling technique by comparing the simulation results with crash test data.
Technical Paper

ATD Neck Tension Comparisons for Various Sled Pulses

2002-12-02
2002-01-3324
The structure of the racecar has been the subject of much discussion with regard to crash safety. The stiffness of the structure, the amount of crush and the resulting deceleration were being judged, in some instances, as too stiff or not stiff enough for the driver. Much of this discussion centered on crash incidents for which no deceleration data were available from crash recorders (black boxes). In this paper, crash test dummy (Anthropomorphic Test Device ATD) results are compared for various idealized deceleration-time histories (deceleration pulses) that represent various structural crush characteristics. A crash velocity of 64.4 KPH (40 MPH) against a wall was used to represent a life threatening energy level.
Technical Paper

Improving the Accuracy of Hybrid III-50th Percentile Male FE Model

2011-04-12
2011-01-0018
Accurate prediction of the responses from the anthropomorphic test devices (ATDs) in vehicle crash tests is critical to achieving better vehicle occupant performances. In recent years, automakers have used finite element (FE) models of the ATDs in computer simulations to obtain early assessments of occupant safety, and to aid in the development of occupant restraint systems. However, vehicle crash test results have variation, sometimes significant. This presents a challenge to assessing the accuracy of the ATD FE models, let alone improving them. To resolve this issue, it is important to understand the test variation and carefully select the target data for model improvement. This paper presents the work carried out by General Motors and Humanetics Innovative Solutions (formerly FTSS) in a joint project, aimed at improving the FE model of the Hybrid III-50 ATD (HIII-50) v5.1.
Technical Paper

Measurement of Occupant Pocketing Kinematics During Whiplash Assessments

2011-04-12
2011-01-0270
This study documents a method developed for dynamically measuring occupant pocketing during various low-speed rear impact, or “whiplash” sled tests. This dynamic pocketing measurement can then be related to the various test parameters used to establish the performance rating or compliance results. Consumer metric and regulatory tests discussed within this paper as potential applications of this technique include, but are not limited to, the Insurance Institute for Highway Safety (IIHS) Low Speed Rear Impact (LSRI) rating, Federal Motor Vehicle Safety Standard (FMVSS) 202a, and European New Car Assessment Program (EURO-NCAP) whiplash rating. Example metrics are also described which may be used to assist in establishing the design position of the head restraint and optimize the balance between low-speed rear impact performance and customer comfort.
Technical Paper

A Study of Hybrid III 5th Percentile Female ATD Chest Accelerometers to Assess Sternum Compression Rate in Chest on Module Driver Out-of-Position Evaluations

2017-03-28
2017-01-1431
Driver out-of-position (OOP) tests were developed to evaluate the risk of inflation induced injury when the occupant is close to the airbag module during deployment. The Hybrid III 5th percentile female Anthropomorphic Test Device (ATD) measures both sternum displacement and chest acceleration through a potentiometer and accelerometers, which can be used to calculate sternum compression rate. This paper documents a study evaluating the chest accelerometers to assess punch-out loading of the chest during this test configuration. The study included ATD mechanical loading and instrumentation review. Finite element analysis was conducted using a Hybrid III - 5th percentile female ATD correlated to testing. The correlated restraint model was utilized with a Hybrid III - 50th percentile male ATD. A 50th percentile male Global Human Body Model (HBM) was then applied for enhanced anatomical review.
Technical Paper

Driver Visibility: Customer Insights and Metric Development

2013-04-08
2013-01-1029
In recent years, there has been a growing interest in driver visibility. This is, in part, due to increasing emphasis placed on design factors influencing visibility such as: aerodynamics, styling, structural stiffness and vehicle packaging. During the development process of a vehicle, it is important to be able to quantify all of these factors. Visibility, however, owing to its sensory nature, has been harder to quantify. As a result, General Motors (GM) has undertaken a study to gain deeper insight into customer perceptions surrounding visibility. Clinics were conducted to help determine the relative importance of different metrics. The paper also explores several new metrics that can help predict customer satisfaction based on vehicle configuration.
Technical Paper

Development of a Model of a Three-Year-Old Child Dummy Used in Air Bag Applications

1992-11-01
922517
The potential effects of passenger air bag deployment on an out-of-position three-year-old child dummy and on a three-year-old child dummy in a child restraint system are two of the items considered in the development of an automotive passenger air bag restraint system. In order to increase our understanding of the passenger air bag and three-year-old dummy interaction, we have developed a three dimensional computer model of a three-year-old child dummy. The dummy model has a compressible sternum and a multi-segment representation of the neck which helps improve the predictive capabilities of the neck criteria. The dummy properties needed as inputs to the occupant model were all experimentally determined. An energy technique was used for separating the elastic, damping and friction components for each joint. Three HYGE sled test cases were simulated to validate the model.
Technical Paper

An Evaluation of Various Viscous Criterion Computational Algorithms

1993-03-01
930100
The viscous criterion (V*C) has been proposed by biomechanics researchers as a generic biomechanical index for potential soft tissue injury. It is defined by the product of the velocity of deformation and the instantaneous compression of torso and abdomen. This criterion requires calculation and differentiation of measured torso/abdomen compression data. Various computational algorithms for calculating viscous criterion are reviewed and evaluated in this paper. These include methods developed by Wayne State University (WSU), NHTSA (DOT) and Ford. An evaluation has been conducted considering the accuracy of these algorithms with both theoretical and experimental data from dummy rib compressions obtained during a crash test. Based on these results, it is found that: V*C results depend on the scheme used in the computation process, the sampling rate and filtering of original raw data. The NHTSA method yields the lowest V*C value.
Technical Paper

Development of a Finite Element Based Model of the Side Impact Dummy

1993-03-01
930444
Numerical simulation techniques are commonly used to assess the crash performance of automobiles and guide their design during the development stage. Mathematical models of vehicle structures, restraint systems and dummies are developed and verified under different test conditions to ensure an effective usage during their application in the study of a crash situation. This paper describes the development and validation of a finite element model of the US Department of Transportation (DOT) side impact dummy (SID). The geometry of the dummy parts is represented by shell and solid elements created from a digital scan of the dummy and the material properties are derived from quasi-static tests of each component. Springs and rigid bodies are added to represent the shock absorber and certain rigid parts such as the femur and ilium. The model verification is carried out by subjecting the dummy to twenty four impact conditions and comparing the simulations to test results.
X