Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

CO Emission Model for an Integrated Diesel Engine, Emissions, and Exhaust Aftertreatment System Level Model

2009-04-20
2009-01-1511
A kinetic carbon monoxide (CO) emission model is developed to simulate engine out CO emissions for conventional diesel combustion. The model also incorporates physics governing CO emissions for low temperature combustion (LTC). The emission model will be used in an integrated system level model to simulate the operation and interaction of conventional and low temperature diesel combustion with aftertreatment devices. The Integrated System Model consists of component models for the diesel engine, engine-out emissions (such as NOx and Particulate Matter), and aftertreatment devices (such as DOC and DPF). The addition of CO emissions model will enhance the capability of the Integrated System Model to predict major emission species, especially for low temperature combustion. In this work a CO emission model is developed based on a two-step global kinetic mechanism [8].
Journal Article

Effect of Mesh Structure in the KIVA-4 Code with a Less Mesh Dependent Spray Model for DI Diesel Engine Simulations

2009-06-15
2009-01-1937
Two different types of mesh used for diesel combustion with the KIVA-4 code are compared. One is a well established conventional KIVA-3 type polar mesh. The other is a non-polar mesh with uniform size throughout the piston bowl so as to reduce the number of cells and to improve the quality of the cell shapes around the cylinder axis which can contain many fuel droplets that affect prediction accuracy and the computational time. This mesh is specialized for the KIVA-4 code which employs an unstructured mesh. To prevent dramatic changes in spray penetration caused by the difference in cell size between the two types of mesh, a recently developed spray model which reduces mesh dependency of the droplet behavior has been implemented. For the ignition and combustion models, the Shell model and characteristic time combustion (CTC) model are employed.
Journal Article

Performance Characterization of a Triple Input Clutch, Layshaft Automatic Transmission Using Energy Analysis

2013-12-15
2013-01-9042
This paper details the design and operating attributes of a triple input clutch, layshaft automatic transmission (TCT) with a torque converter in a rear wheel drive passenger vehicle. The objectives of the TCT design are to reduce fuel consumption while increasing acceleration performance through the design of the gearing arrangement, shift actuation system and selection of gear ratios and progression. A systematic comparison of an 8-speed TCT design is made against a hypothetical 8-speed planetary automatic transmission (AT) with torque converter using an energy analysis model based upon empirical data and first principles of vehicle-powertrain systems. It was found that the 8-speed TCT design has the potential to provide an approximate 3% reduction in fuel consumption, a 3% decrease in 0-100 kph time and 30% reduction in energy loss relative to a comparable 8-speed planetary AT with an idealized logarithmic ratio progression.
Journal Article

Experimental and Numerical Investigations of Close-Coupled Pilot Injections to Reduce Combustion Noise in a Small-Bore Diesel Engine

2015-04-14
2015-01-0796
A pilot-main injection strategy is investigated for a part-load operating point in a single cylinder optical Diesel engine. As the energizing dwell between the pilot and main injections decreases below 200 μs, combustion noise reaches a minimum and a reduction of 3 dB is possible. This decrease in combustion noise is achieved without increased pollutant emissions. Injection schedules employed in the engine are analyzed with an injection analyzer to provide injection rates for each dwell tested. Two distinct injection events are observed even at the shortest dwell tested; rate shaping of the main injection occurs as the dwell is adjusted. High-speed elastic scattering imaging of liquid fuel is performed in the engine to examine initial liquid penetration rates.
Journal Article

Engine Diagnostics Using Acoustic Emissions Sensors

2016-04-05
2016-01-0639
Engine acoustics measured by microphones near the engine have been used in controlled laboratory settings for combustion feedback and even combustion phasing control, but the use of these techniques in a vehicle where many other noise sources exist is problematic. In this study, surface-mounted acoustic emissions sensors are embedded in the block of a 2.0L turbocharged GDI engine, and the signal is analyzed to identify useful feedback features. The use of acoustic emissions sensors, which have a very high frequency response and are commonly used for detecting material failures for health monitoring, including detecting gear pitting and ring scuffing on test stands, enables detection of acoustics both within the range of human hearing and in the ultrasonic spectrum. The high-speed acoustic time-domain data are synchronized with the crank-angle-domain combustion data to investigate the acoustic emissions response caused by various engine events.
Journal Article

In-Situ Measurement and Numerical Solution of Main Journal Bearing Lubrication in Actual Engine Environment

2016-04-05
2016-01-0894
A simple method is frequently used to calculate a reciprocating engine’s bearing load from the measured cylinder pressure. However, it has become apparent that engine downsizing and weight reduction cannot be achieved easily if an engine is designed based on the simple method. Because of this, an actual load on a bearing was measured, and the measured load values were compared with a bearing load distribution calculated from cylinder pressure. As a result, it was found that some of actual loads were about half of the calculated ones at certain crank angles. The connecting rod’s elastic deformation was focused on as a factor behind such differences, and the rod’s deformation due to the engine’s explosion load was studied. As a result, it was found that the rod part of the engine’s connecting rod was bent by 0.2 mm and became doglegged. Additional investigation regarding these findings would allow further engine downsizing.
Technical Paper

On Road Fuel Economy Impact by the Aerodynamic Specifications under the Natural Wind

2020-04-14
2020-01-0678
According to some papers, the label fuel economy and the actual fuel economy experienced by the customers may exhibit a gap. One of the reasons may stem from the aerodynamic drag variations due to the natural wind. The fuel consumption is measured through bench test under several driving modes by using the road load as input condition. The road load is measured through the coast down test under less wind ambient conditions as determined by each regulation. The present paper aims to analyze the natural wind conditions encountered by the vehicle on public roads and to operate a comparison between the fuel consumptions and the driving energy. In this paper, the driving energy is calculated by the aerodynamic drag from the natural wind specifications and driving conditions. This driving energy and the fuel consumptions show good correlation. The fuel consumption is obtained from the vehicle Engine control unit(ECU) data.
Technical Paper

Elucidation of the Sulfide Corrosion Mechanism in Piston Pin Bushings

2020-04-14
2020-01-1079
Recent trends to downsize engines have resulted in lighter weight and greater compactness. At the same time, however, power density has increased due to the addition of turbocharger and other such means to supplement engine power and torque, and this has increased the thermal and mechanical load. In this kind of environment, corrosion of the copper alloy bushing (piston pin bushing) that is press-fitted in the small end of the connecting rod becomes an issue. The material used in automobile bearings, of which the bushing is a typical example, is known to undergo sulfidation corrosion through reaction with an extreme-pressure additive Zinc Dialkyldithiophosphate (ZnDTP) in the lubricating oil. However, that reaction path has not been clarified. The purpose of the present research, therefore, is to clarify the reaction path of ZnDTP and copper in an actual engine environment.
Journal Article

Strength Analysis of a Cylinder Head Gasket Using Computer Simulation

2009-04-20
2009-01-0197
The properties sought in a multi-layer steel cylinder head gasket include cylinder pressure sealing and fatigue strength in order for there to be no damage while the engine is in operation. Diesel engines, in particular, have high cylinder pressure and a high axial tension by the cylinder head bolt demanding severe environment to the gaskets. As engine performance is enhanced, there are cases when cracks develop in the gasket plate, necessitating countermeasures. The cause of cracking in a flat center plate, in particular, has not yet been explained, and no method for evaluation had previously existed. Three-dimensional non-linear finite element calculation was therefore performed to verify the cause. First, a static pressurization rig test was used and the amount of strain was measured to confirm the validity of the calculations. Then the same method of calculation was used to verify the distribution of strain, with a focus on the plate position.
Journal Article

Comparative Study on Various Methods for Measuring Engine Particulate Matter Emissions

2008-06-23
2008-01-1748
Studies have shown that there are a significant number of chemical species present in engine exhaust particulate matter emissions. Additionally, the majority of current world-wide regulatory methods for measuring engine particulate emissions are gravimetrically based. As modern engines considerably reduce particulate mass emissions, these methods become less stable and begin to display higher levels of measurement uncertainty. In this study, a characterization of mass emissions from three heavy-duty diesel engines, with a range of particulate emission levels, was made in order to gain a better understanding of the variability and uncertainty associated with common mass measurement methods, as well as how well these methods compare with each other. Two gravimetric mass measurement methods and a reconstructed mass method were analyzed as part of the present study.
Journal Article

Detailed Effects of a Diesel Particulate Filter on the Reduction of Chemical Species Emissions

2008-04-14
2008-01-0333
Diesel particulate filters are designed to reduce the mass emissions of diesel particulate matter and have been proven to be effective in this respect. Not much is known, however, about their effects on other unregulated chemical species. This study utilized source dilution sampling techniques to evaluate the effects of a catalyzed diesel particulate filter on a wide spectrum of chemical emissions from a heavy-duty diesel engine. The species analyzed included both criteria and unregulated compounds such as particulate matter (PM), carbon monoxide (CO), hydrocarbons (HC), inorganic ions, trace metallic compounds, elemental and organic carbon (EC and OC), polycyclic aromatic hydrocarbons (PAHs), and other organic compounds. Results showed a significant reduction for the emissions of PM mass, CO, HC, metals, EC, OC, and PAHs.
Journal Article

Investigation of Spray Evaporation and Numerical Model Applied for Fuel-injection Small Engines

2008-09-09
2008-32-0064
The purpose of this research is to develop a prediction technique that can be used in the development of port fuel-injection (hereinafter called PFI) gasoline engines, especially for general purpose small utility engines. Utility engines have two contradictory desirable aspects: compactness and high-power at wide open throttle. Therefore, applying the port fuel injector to utility engines presents a unique intractableness that is different from application to automobiles or motorcycles. At the condition of wide open throttle, a large amount of fuel is required to output high power, and injected fuel is deposited as a wall film on the intake port wall. Despite the fuel rich condition, emissions are required to be kept under a certain level. Thus, it is significant to understand the wall film phenomenon and control film thickness in the intake ports.
Journal Article

Development of High Fatigue Strength for Powder-Forged Connecting Rods

2008-04-14
2008-01-0849
Technology has been developed to increase the fatigue strength of powder-forged connecting rods. The fatigue strength of powder-forged materials was increased without adding special alloy components or lowering workability by adjusting the ratios of the conventional main mixed powders (iron, carbon, copper). In addition to solid solution strengthening of the ferrite using copper, reducing porosity, which is a material surface defect, is also an effective method of increasing fatigue strength. Reducing carbon content greatly reduced the occurrence of defects in the forging stage. The results of this research showed that the fatigue strength of high strength powder-forged connecting rods can be increased by 30% or more over that of conventional materials, allowing powder-forged connecting rods to be applied to even higher output and higher load engines than before.
Journal Article

Multi-Variable Air-Path Management for a Clean Diesel Engine Using Model Predictive Control

2009-04-20
2009-01-0733
Recently, emission regulations have been strict in many countries, and it is very difficult technical issue to reduce emissions of diesel cars. In order to reduce the emissions, various combustion technologies such as Massive EGR, PCCI, Rich combustion, etc. have been researched. The combustion technologies require precise control of the states of in-cylinder gas (air mass flow, EGR rate etc.). However, a conventional controller such as PID controller could not provide sufficient control accuracy of the states of in-cylinder gas because the air-pass system controlled by an EGR valve, a throttle valve, a variable nozzle turbo, etc. is a multi-input, multi-output (MIMO) coupled system. Model predictive control (MPC) is well known as the advanced MIMO control method for industrial process. Generally, the sampling period of industrial process is rather long so there is enough time to carry out the optimization calculation for MPC.
Journal Article

A Comparison of Spray-Guided Stratified-Charge Combustion Performance with Outwardly-Opening Piezo and Multi-Hole Solenoid Injectors

2011-04-12
2011-01-1217
This investigation was aimed at measuring the relative performance of two spray-guided, single-cylinder, spark-ignited direct-injected (SIDI) engine combustion system designs. The first utilizes an outwardly-opening poppet, piezo-actuated injector, and the second a conventional, solenoid operated, inwardly-opening multi-hole injector. The single-cylinder engine tests were limited to steady state, warmed-up conditions. The comparison showed that these two spray-guided combustion systems with two very different sprays had surprisingly close results and only differed in some details. Combustion stability and smoke emissions of the systems are comparable to each other over most of the load range. Over a simulated Federal Test Procedure (FTP) cycle, the multi-hole system had 15% lower hydrocarbon and 18% lower carbon monoxide emissions.
Journal Article

Investigation of the Load Limits and Emissions of a Naturally-Aspirated Direct-Injection Diesel Engine

2012-04-16
2012-01-0686
Cost and robustness are key factors in the design of diesel engines for low power density applications. Although compression ignition engines can produce very high power density output with turbocharging, naturally aspirated (NA) engines have advantages in terms of reduced cost and avoidance of system complexity. This work explores the use of direct injection (DI) and exhaust gas recirculation (EGR) in NA engines using experimental data from a single-cylinder research diesel engine. The engine was operated with a fixed atmospheric intake manifold pressure over a map of speed, air-to-fuel ratio, EGR, fuel injection pressure and injection timing. Conventional gaseous engine-out emissions were measured along with high speed cylinder pressure data to show the load limits and resulting emissions of the NA-DI engine studied. Well known reductions in NOX with increasing levels of EGR were confirmed with a corresponding loss in peak power output.
Journal Article

Analysis of Various Operating Strategies for a Parallel-Hybrid Diesel Powertrain with a Belt Alternator Starter

2012-04-16
2012-01-1008
The sustainable use of energy and the reduction of pollutant emissions are main concerns of the automotive industry. In this context, Hybrid Electric Vehicles (HEVs) offer significant improvements in the efficiency of the propulsion system and allow advanced strategies to reduce pollutant and noise emissions. The paper presents the results of a simulation study that addresses the minimization of fuel consumption, NOx emissions and combustion noise of a medium-size passenger car. Such a vehicle has a parallel-hybrid diesel powertrain with a high-voltage belt alternator starter. The simulation reproduces real-driver behavior through a dynamic modeling approach and actuates an automatic power split between the Internal Combustion Engine (ICE) and the Electric Machine (EM). Typical characteristics of parallel hybrid technologies, such as Stop&Start, regenerative braking and electric power assistance, are implemented via an operating strategy that is based on the reduction of total losses.
Journal Article

Gasoline DICI Engine Operation in the LTC Regime Using Triple- Pulse Injection

2012-04-16
2012-01-1131
An investigation of high speed direct injection (DI) compression ignition (CI) engine combustion fueled with gasoline injected using a triple-pulse strategy in the low temperature combustion (LTC) regime is presented. This work aims to extend the operation ranges for a light-duty diesel engine, operating on gasoline, that have been identified in previous work via extended controllability of the injection process. The single-cylinder engine (SCE) was operated at full load (16 bar IMEP, 2500 rev/min) and computational simulations of the in-cylinder processes were performed using a multi-dimensional CFD code, KIVA-ERC-Chemkin, that features improved sub-models and the Chemkin library. The oxidation chemistry of the fuel was calculated using a reduced mechanism for primary reference fuel combustion chosen to match ignition characteristics of the gasoline fuel used for the SCE experiments.
Journal Article

Heavy-Duty RCCI Operation Using Natural Gas and Diesel

2012-04-16
2012-01-0379
Many recent studies have shown that the Reactivity Controlled Compression Ignition (RCCI) combustion strategy can achieve high efficiency with low emissions. However, it has also been revealed that RCCI combustion is difficult at high loads due to its premixed nature. To operate at moderate to high loads with gasoline/diesel dual fuel, high amounts of EGR or an ultra low compression ratio have shown to be required. Considering that both of these approaches inherently lower thermodynamic efficiency, in this study natural gas was utilized as a replacement for gasoline as the low-reactivity fuel. Due to the lower reactivity (i.e., higher octane number) of natural gas compared to gasoline, it was hypothesized to be a better fuel for RCCI combustion, in which a large reactivity gradient between the two fuels is beneficial in controlling the maximum pressure rise rate.
Journal Article

Simultaneous Measurements of In-Cylinder Temperature and Velocity Distribution in a Small-Bore Diesel Engine Using Thermographic Phosphors

2013-04-08
2013-01-0562
In-cylinder temperature and velocity fields were quantified simultaneously in an optically accessible, small-bore diesel engine. A technique utilizing luminescence from Pr:YAG phosphor particles aerosolized into the intake air was used for temperature determination while particle image velocimetry (PIV) on the aforementioned phosphor particles was used to simultaneously measure the velocity field. The temperature and velocity fields were measured at different points throughout the compression stroke up to −30 CAD. Systematic interference due to emission from the piston window reduced the accuracy of the measurements at crank angles closer to TDC. Single-shot simultaneous measurements of the temperature and velocity fields were made using both unheated and heated intake temperatures. In both cases, cycle-to-cycle variations in the temperature and velocity fields were visible.
X