Refine Your Search

Topic

Author

Affiliation

Search Results

Video

Analysis of Various Operating Strategies for a Parallel-Hybrid Diesel Powertrain with a Belt Alternator Starter

2012-05-30
This paper presents a low-cost path for extending the range of small urban pure electric vehicles by hydraulic hybridization. Energy management strategies are investigated to improve the electric range, component efficiencies, as well as battery usable capacity. As a starting point, a rule-based control strategy is derived by analysis of synergistic effects of lead-acid batteries, high efficient operating region of DC motor and the hydraulic pump/motor. Then, Dynamic Programming (DP) is used as a benchmark to find the optimal control trajectories for DC motor and Hydraulic Pump/Motor. Implementable rules are derived by studying the optimal control trajectories from DP. With new improved rules implemented, simulation results show electric range improvement due to increased battery usable capacity and higher average DC motor operating efficiency. Presenter Xianke Lin
Journal Article

The Effects of Neat Biodiesel Usage on Performance and Exhaust Emissions from a Small Displacement Passenger Car Diesel Engine

2010-05-05
2010-01-1515
The effects of using neat FAME (Fatty Acid Methyl Ester) in a modern small displacement passenger car diesel engine have been evaluated in this paper. In particular the effects on engine performance at full load with standard (i.e., without any special tuning) ECU calibration were analyzed, highlighting some issues in the low end torque due to the lower exhaust gas temperatures at the turbine inlet, which caused a remarkable decrease of the available boost, with a substantial decrease of the engine torque output, far beyond the expected engine derating due to the lower LHV of the fuel. However, further tests carried out after ECU recalibration, showed that the same torque levels measured under diesel operation can be obtained with neat biodiesel too, thus highlighting the potential for maintaining the same level of performance.
Journal Article

Particle Number and Size Distribution from a Small Displacement Automotive Diesel Engine during DPF Regeneration

2010-05-05
2010-01-1552
The aim of this work is to analyze particle number and size distribution from a small displacement Euro 5 common rail automotive diesel engine, equipped with a close coupled aftertreatment system, featuring a DOC and a DPF integrated in a single canning. In particular the effects of different combustion processes on PM characteristics were investigated, by comparing measurements made both under normal operating condition and under DPF regeneration mode. Exhaust gas was sampled at engine outlet, at DOC outlet and at DPF outlet, in order to fully characterize PM emissions through the whole exhaust line. After a two stage dilution system, sampled gas was analyzed by means of a TSI 3080 SMPS, in the range from 6 to 240 nm. Particle number and size distribution were evaluated at part load operating conditions, representative of urban driving.
Technical Paper

An Engine Parameters Sensitivity Analysis on Ducted Fuel Injection in Constant-Volume Vessel Using Numerical Modeling

2021-09-05
2021-24-0015
The use of Ducted Fuel Injection (DFI) for attenuating soot formation throughout mixing-controlled diesel combustion has been demonstrated impressively effective both experimentally and numerically. However, the last research studies have highlighted the need for tailored engine calibration and duct geometry optimization for the full exploitation of the technology potential. Nevertheless, the research gap on the response of DFI combustion to the main engine operating parameters has still to be fully covered. Previous research analysis has been focused on numerical soot-targeted duct geometry optimization in constant-volume vessel conditions. Starting from the optimized duct design, the herein study aims to analyze the influence of several engine operating parameters (i.e. rail pressure, air density, oxygen concentration) on DFI combustion, having free spray results as a reference.
Technical Paper

Tire Experimental Characterization Using Contactless Measurement Methods

2021-08-31
2021-01-1114
In the frame of automotive Noise Vibration and Harshness (NVH) evaluation, inner cabin noise is among the most important indicators. The main noise contributors can be identified in engine, suspensions, tires, powertrain, brake system, etc. With the advent of E-vehicles and the consequent absence of the Internal Combustion Engine (ICE), tire/road noise has gained more importance, particularly at mid-speed driving and in the spectrum up to 300 Hz. At the state of the art, the identification and characterization of Noise and Vibration sources rely on pointwise sensors (microphones, accelerometers, strain gauges). Optical methods such as Digital Image Correlation (DIC) and Laser Doppler Vibrometer (LDV) have recently received special attention in the NVH field because they can be used to obtain full-field measurements.
Journal Article

Offline and Real-Time Optimization of EGR Rate and Injection Timing in Diesel Engines

2015-09-06
2015-24-2426
New methodologies have been developed to optimize EGR rate and injection timing in diesel engines, with the aim of minimizing fuel consumption (FC) and NOx engine-out emissions. The approach entails the application of a recently developed control-oriented engine model, which includes the simulation of the heat release rate, of the in-cylinder pressure and brake torque, as well as of the NOx emission levels. The engine model was coupled with a C-class vehicle model, in order to derive the engine speed and torque demand for several driving cycles, including the NEDC, FTP, AUDC, ARDC and AMDC. The optimization process was based on the minimization of a target function, which takes into account FC and NOx emission levels. The selected control variables of the problem are the injection timing of the main pulse and the position of the EGR valve, which have been considered as the most influential engine parameters on both fuel consumption and NOx emissions.
Journal Article

HRR and MFB50 Estimation in a Euro 6 Diesel Engine by Means of Control-Oriented Predictive Models

2015-04-14
2015-01-0879
The paper has the aim of assessing and applying control-oriented models capable of predicting HRR (Heat Release Rate) and MFB50 in DI diesel engines. To accomplish this, an existing combustion model, previously developed by the authors and based on the accumulated fuel mass approach, has been modified to enhance its physical background, and then calibrated and validated on a GM 1.6 L Euro 6 DI diesel engine. It has been verified that the accumulated fuel mass approach is capable of accurately simulating medium-low load operating conditions characterized by a dominant premixed combustion phase, while it resulted to be less accurate at higher loads. In the latter case, the prediction of the heat release has been enhanced by including an additional term, proportional to the fuel injection rate, in the model. The already existing and the enhanced combustion models have been calibrated on the basis of experimental tests carried out on a dynamic test bench at GMPT-E.
Journal Article

Development and Validation of a Real-Time Model for the Simulation of the Heat Release Rate, In-Cylinder Pressure and Pollutant Emissions in Diesel Engines

2016-01-15
2015-01-9044
A real-time mean-value engine model for the simulation of the HRR (heat release rate), in-cylinder pressure, brake torque and pollutant emissions, including NOx and soot, has been developed, calibrated and assessed at both steady-state and transient conditions for a Euro 6 1.6L GM diesel engine. The chemical energy release has been simulated using an improved version of a previously developed model that is based on the accumulated fuel mass approach. The in-cylinder pressure has been evaluated on the basis of the inversion of a single-zone model, using the net energy release as input. The latter quantity was derived starting from the simulated chemical energy release, and evaluating the heat transfer of the charge with the walls. NOx and soot emissions were simulated on the basis of semi-empirical correlations that take into account the in-cylinder thermodynamic properties, the chemical energy release and the main engine parameters.
Journal Article

Engine Diagnostics Using Acoustic Emissions Sensors

2016-04-05
2016-01-0639
Engine acoustics measured by microphones near the engine have been used in controlled laboratory settings for combustion feedback and even combustion phasing control, but the use of these techniques in a vehicle where many other noise sources exist is problematic. In this study, surface-mounted acoustic emissions sensors are embedded in the block of a 2.0L turbocharged GDI engine, and the signal is analyzed to identify useful feedback features. The use of acoustic emissions sensors, which have a very high frequency response and are commonly used for detecting material failures for health monitoring, including detecting gear pitting and ring scuffing on test stands, enables detection of acoustics both within the range of human hearing and in the ultrasonic spectrum. The high-speed acoustic time-domain data are synchronized with the crank-angle-domain combustion data to investigate the acoustic emissions response caused by various engine events.
Journal Article

Pressure Following Strategy for Conventional Braking Control Applied to a HIL Test Bench

2017-09-17
2017-01-2496
Brake systems represent important components for passenger cars since they are strictly related to vehicle safety: Anti-lock Braking Systems (ABS) and Electronic Stability Control (ESC) are the most well-known examples. The paper is focused on the characterization of the braking hydraulic plant and on the design of a pressure following control strategy. This strategy is aimed at pursuing performances and/or comfort objectives beyond the typical safety task. The low-level logic (focus of the paper) consists of a Feedforward and Proportional Integral controller. A Hardware In the Loop (HIL) braking test bench is adopted for pressure controller validation by providing some realistic reference pressure histories evaluated by a high-level controller. Results prove that innovative control strategies can be applied to conventional braking systems for achieving targets not limited to braking issues, i.e., comfort or NVH tasks.
Journal Article

Development of a High Performance Natural Gas Engine with Direct Gas Injection and Variable Valve Actuation

2017-09-04
2017-24-0152
Natural gas is a promising alternative fuel for internal combustion engine application due to its low carbon content and high knock resistance. Performance of natural gas engines is further improved if direct injection, high turbocharger boost level, and variable valve actuation (VVA) are adopted. Also, relevant efficiency benefits can be obtained through downsizing. However, mixture quality resulting from direct gas injection has proven to be problematic. This work aims at developing a mono-fuel small-displacement turbocharged compressed natural gas engine with side-mounted direct injector and advanced VVA system. An injector configuration was designed in order to enhance the overall engine tumble and thus overcome low penetration.
Journal Article

Analysis of Reservoir Pressure Decay, Velocity and Concentrations Fields of Natural Gas Venting from Pressurized Reservoir into the Atmosphere

2011-04-12
2011-01-0252
Compressed natural gas (CNG) currently is used as an alternative fuel for internal combustion engines in motor vehicles. This paper presents results of an analysis of leaks from a model isolated section of CNG fuel system. Discharge of CNG was modeled as vent flow of a real gas hydrocarbon mixture through an orifice from a reservoir with finite volume. Pressures typically used in CNG fuel systems result in choked flow for gas venting directly to atmosphere, producing an under-expanded, momentum-dominated, turbulent free jet with well defined velocity and concentration fields. This paper presents results of analyses of reservoir pressure decay, and vent flow and concentrations fields for CNG venting from a pressurized reservoir into the atmosphere. A combination of empirically-derived analytical relationships and detailed two-dimensional high resolution computational fluid dynamic modeling was used to determine the velocity and concentrations fields of the resulting CNG jet.
Journal Article

High Temperature Brake Cooling - Characterization for Brake System Modeling in Race Track and High Energy Driving Conditions

2011-04-12
2011-01-0566
At elevated temperatures, such as those encountered under race track or fade test conditions, the closed-form solution to the lumped capacitance model for characterizing brake cooling (fitted to a standard cooling test temperature range) tends to break down and provide an inaccurate representation of brake rotor cooling behavior. Accurate prediction of cooling is fundamental to brake system component sizing and selection of materials at the early stages of a vehicle program; this is especially true of a high performance vehicle with track performance requirements. To this end, alternative approaches to characterizing brake cooling have been examined to determine their suitability for use in measurement and simulation of brake performance.
Journal Article

Understanding Driver Perceptions of a Vehicle to Vehicle (V2V) Communication System Using a Test Track Demonstration

2011-04-12
2011-01-0577
Vehicle-to-vehicle (V2V) communication systems can enable a number of wireless-based vehicle features that can improve traffic safety, driver convenience, and roadway efficiency and facilitate many types of in-vehicle services. These systems have an extended communication range that can provide drivers with information about the position and movements of nearby V2Vequipped vehicles. Using this technology, these vehicles are able to communicate roadway events that are beyond the driver's view and provide advisory information that will aid drivers in avoiding collisions or congestion ahead. Given a typical communication range of 300 meters, drivers can potentially receive information well in advance of their arrival to a particular location. The timing and nature of presenting V2V information to the driver will vary depending on the nature and criticality of the scenario.
Journal Article

Cfd Diagnostic Methodology for the Assessment of Mixture Formation Quality in GDI Engines

2011-09-11
2011-24-0151
The fuel injection plays a crucial role in determining the mixture formation process in Gasoline Direct Injection (GDI) engines. Pollutant emissions, and soot emissions in particular, as well as phenomena affecting engine reliability, such as oil dilution and injector coking, are deeply influenced by the injection system features, such as injector geometric characteristics (such as injector type, injector position and targeting within the combustion chamber) and operating characteristics (such as injection pressure, injection phasing, etc.). In this paper, a new CFD methodology is presented, allowing a preliminary assessment of the mixture formation quality in terms of expected soot emissions, oil dilution and injector coking risks for different injection systems (such as for instance multihole or swirl injectors) and different injection strategies, from the early stages of a new engine design.
Journal Article

FMVSS126 Electronic Stability Control Sine With Dwell Incomplete Vehicle Type 2 Analysis

2011-04-12
2011-01-0956
Incomplete vehicles are partially manufactured by an Original Equipment Manufacturer (OEM) and subsequently sold to and completed by a final-stage manufacturer. Section S8.8, Final-Stage Manufacturers and Alterers, of Federal Motor Vehicle Safety Standard (FMVSS) 126 states “Vehicle that are manufactured in two or more stages or that are altered (within the meaning of 49 CFR 567.7) after having been previously certified in accordance with Part 567 of this chapter, are not subject to the requirements of S8.1 through S8.5. Instead, all vehicles produced by these manufacturers on or after September 1, 2012, must comply with this standard.” The FMVSS 126 compliance of the completed vehicle can be certified in three ways: by the OEM provided no alterations are made to identified components (TYPE 1), conditionally by the OEM provided the final-stage manufacturer follows specific guidelines (TYPE 2), or by the final-stage manufacturer (TYPE 3).
Journal Article

Vehicle Handling Parameter Trends: 1980 - 2010

2011-04-12
2011-01-0969
Handling and tire performance continue to evolve due to significant improvements in vehicle, electronics, and tire technology over the years. This paper examines the trends in handling and tire performance metrics for production cars and trucks since the 1980's. This paper is based on a significant number of directional response and tire tests conducted during that period. It describes ranges of these parameters and shows how they have changed over the past thirty years.
Journal Article

Light Vehicle Dry Stopping Distance - Vehicle Speed Correction, Tire Burnish, and Surface Friction Correction

2011-04-12
2011-01-0966
Consistent and accurate vehicle stopping distance measurements have been difficult to achieve across the industry including media vehicle evaluations. Initial test speed, brake pedal force application, tire burnish, road surface friction, and Anti-lock Brake System (ABS) efficiency are five test variables influencing variation in stopping distance measurements. This paper will discuss these five test variables and how to apply consistent test methods to reduce test variation.
Journal Article

Investigation of the Load Limits and Emissions of a Naturally-Aspirated Direct-Injection Diesel Engine

2012-04-16
2012-01-0686
Cost and robustness are key factors in the design of diesel engines for low power density applications. Although compression ignition engines can produce very high power density output with turbocharging, naturally aspirated (NA) engines have advantages in terms of reduced cost and avoidance of system complexity. This work explores the use of direct injection (DI) and exhaust gas recirculation (EGR) in NA engines using experimental data from a single-cylinder research diesel engine. The engine was operated with a fixed atmospheric intake manifold pressure over a map of speed, air-to-fuel ratio, EGR, fuel injection pressure and injection timing. Conventional gaseous engine-out emissions were measured along with high speed cylinder pressure data to show the load limits and resulting emissions of the NA-DI engine studied. Well known reductions in NOX with increasing levels of EGR were confirmed with a corresponding loss in peak power output.
Journal Article

Analysis of Various Operating Strategies for a Parallel-Hybrid Diesel Powertrain with a Belt Alternator Starter

2012-04-16
2012-01-1008
The sustainable use of energy and the reduction of pollutant emissions are main concerns of the automotive industry. In this context, Hybrid Electric Vehicles (HEVs) offer significant improvements in the efficiency of the propulsion system and allow advanced strategies to reduce pollutant and noise emissions. The paper presents the results of a simulation study that addresses the minimization of fuel consumption, NOx emissions and combustion noise of a medium-size passenger car. Such a vehicle has a parallel-hybrid diesel powertrain with a high-voltage belt alternator starter. The simulation reproduces real-driver behavior through a dynamic modeling approach and actuates an automatic power split between the Internal Combustion Engine (ICE) and the Electric Machine (EM). Typical characteristics of parallel hybrid technologies, such as Stop&Start, regenerative braking and electric power assistance, are implemented via an operating strategy that is based on the reduction of total losses.
X