Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Engineered Surface Features for Brake Discs to Improve Performance in Fade Conditions

2013-09-30
2013-01-2039
Driving on the race track is an especially grueling situation for the automotive brake system. Temperatures can exceed the phase transition temperature of the disc material, wear rates of friction material can be orders of magnitude higher than during street use, and hydraulic pressures and mechanical stresses on components can approach their design limits. It is a given that friction material under these conditions will wear unevenly - causing taper and cupping wear - and an associated set of performance degradations will occur, including an increase in fluid consumption (pedal travel increase) and loss of mechanical efficiency (pedal force increase).
Technical Paper

A Direct 1D/3D (GT-SUITE/SimericsMP+) Coupled Computational Approach to Study the Impact of Engine Oil Pan Sloshing on Lubrication Pump Performance

2020-04-14
2020-01-1112
During a vehicle drive cycle, the oil in the engine oil pan sloshes very vigorously due to the acceleration of the vehicle. This can cause the pickup tube in the engine oil pan to become uncovered from oil and exposed to air, which affects the lubrication pump performance. Engine oil pan sloshing is inherently a 3D problem as the free oil surface is constantly changing. Multi-dimensional Computational Fluid Dynamics (CFD) methods are very useful to simulate such problems with high detail and accuracy but are computationally very expensive. Part of the engine lubrication system, such as the pump, can be modelled in 1D which can predict accurate results at relatively high computational speeds. By utilizing the advantages of both 1D and 3D CFD models, a coupled 1D-3D simulation approach has been developed to capture the detailed oil sloshing phenomenon in SimericsMP+ and the system level simulation is conducted in GT-SUITE where 3D spatial data is not required.
Technical Paper

N&V Component Structural Integration and Mounted Component Durability Implications

2020-04-14
2020-01-1396
Exterior component integration presents competing performance challenges for balanced exterior styling, safety, ‘structural feel’ [1] and durability. Industry standard practices utilize noise and vibration mode maps and source-path-receiver [2] considerations for component mode frequency placement. This modal frequency placement has an influence on ‘structural feel’ and durability performance. Challenges have increased with additional styling content, geometric overhang from attachment points, component size and mass, and sensor modules. Base excitation at component attachment interfaces are increase due to relative positioning of the suspension and propulsion vehicle source inputs. These components might include headlamps, side mirrors, end gates, bumpers and fascia assemblies. Here, we establish basic expectations for the behavior of these systems, and ultimately consolidate existing rationales that are applied to these systems.
Journal Article

Iterative Learning Algorithm Design for Variable Admittance Control Tuning of A Robotic Lift Assistant System

2017-03-28
2017-01-0288
The human-robot interaction (HRI) is involved in a lift assistant system of manufacturing assembly line. The admittance model is applied to control the end effector motion by sensing intention from force of applied by a human operator. The variable admittance including virtual damping and virtual mass can improve the performance of the systems. But the tuning process of variable admittance is un-convenient and challenging part during the real test for designers, while the offline simulation is lack of learning process and interaction with human operator. In this paper, the Iterative learning algorithm is proposed to emulate the human learning process and facilitate the variable admittance control design. The relationship between manipulate force and object moving speed is demonstrated from simulation data. The effectiveness of the approach is verified by comparing the simulation results between two admittance control strategies.
Journal Article

Development of a Lightweight Third-Generation Advanced High-Strength Steel (3GAHSS) Vehicle Body Structure

2018-04-03
2018-01-1026
This article covers an application of third-generation advanced high-strength steel (3GAHSS) grades to vehicle lightweight body structure development. Design optimization of a vehicle body structure using a multi-scale material model is discussed. The steps in the design optimization and results are presented. Results show a 30% mass reduction potential over a baseline mid-size sedan body side structure with the use of 3GAHSS.
Journal Article

Application of Transient Magnetic Fields to a Magnetosensitive Device

2018-04-03
2018-01-1349
EMC Component Validation Responsibilities encompass many realms. One of these realms is the effect of magnetic fields on silicon-based devices. This article describes a method for exposing these devices to magnetic fields with waveforms other than the traditional sinusoidal excitation. The method commonly used to explore the sensitivity of active silicon devices is exposure of the device to a representative sinusoidal field and observation of its reaction or lack thereof. The challenge is to characterize the representative field and be able to verify its effectiveness. Recent vehicle level testing of new designs has brought our attention to time-varying or transient magnetic field shapes that create deviations not previously detected with Military Standard 461 (MIL-STD-461) type sinusoidal magnetic field exposure.
Journal Article

Development and Validation of the SAE J3052 High Pressure Differential Flow Rate Recommended Practice

2017-09-17
2017-01-2498
This paper describes the development work that went into the creation of the SAE J3052 “Brake Hydraulic Component Flow Rate Measurement at High Delta Pressure”, and also shows some example applications. The SAE J3052 recommended practice is intended to measure flow characteristics through brake hydraulic components and subsystems driven by pressure differentials above 1 bar, and was anticipated by the task force to be invoked for components and subsystems for which pressure response characteristics are critical for the operation of the system (such as service brake pressure response and stopping distance, or pressure rise rate of a single hydraulic circuit in response to an Electronic Stability Control command). Data generated by this procedure may be used as a direct assessment of the flow performance of a brake hydraulic component, or they may be used to build subsystem or system-level models.
Journal Article

Brake System Performance at Higher Mileage

2017-09-17
2017-01-2502
The purchase of a new automobile is unquestionably a significant investment for most customers, and with this recognition, comes a correspondingly significant expectation for quality and reliability. Amongst automotive systems -when it comes to considerations of reliability - the brakes (perhaps along with the tires) occupy a rarified position of being located in a harsh environment, subjected to continuous wear throughout their use, and are critical to the safe performance of the vehicle. Maintenance of the brake system is therefore a fact of life for most drivers - something that almost everyone must do, yet given the potentially considerable expense, it is something that of great benefit to minimize.
Technical Paper

Springback Prediction and Correlations for Third Generation High Strength Steel

2020-04-14
2020-01-0752
Third generation advanced high strength steels (3GAHSS) are increasingly used in automotive for light weighting and safety body structure components. However, high material strength usually introduces higher springback that affects the dimensional accuracy. The ability to accurately predict springback in simulations is very important to reduce time and cost in stamping tool and process design. In this work, tension and compression tests were performed and the results were implemented to generate Isotropic/Kinematic hardening (I/KH) material models on a 3GAHSS steel with 980 MPa minimum tensile strength. Systematic material model parametric studies and evaluations have been conducted. Case studies from full-scale industrial parts are provided and the predicted springback results are compared to the measured springback data. Key variables affecting the springback prediction accuracy are identified.
Technical Paper

Interactive Effects between Sheet Steel, Lubricants, and Measurement Systems on Friction

2020-04-14
2020-01-0755
This study evaluated the interactions between sheet steel, lubricant and measurement system under typical sheet forming conditions using a fixed draw bead simulator (DBS). Deep drawing quality mild steel substrates with bare (CR), electrogalvanized (EG) and hot dip galvanized (HDG) coatings were tested using a fixed DBS. Various lubricant conditions were targeted to evaluate the coefficient of friction (COF) of the substrate and lubricant combinations, with only rust preventative mill oil (dry-0 g/m2 and 1 g/m2), only forming pre-lube (dry-0 g/m2, 1 g/m2, and >6 g/m2), and a combination of two, where mixed lubrication cases, with incremental amounts of a pre-lube applied (0.5, 1.0, 1.5 and 2.0 g/m2) over an existing base of 1 g/m2 mill oil, were analyzed. The results showed some similarities as well as distinctive differences in the friction behavior between the bare material and the coatings.
Technical Paper

Purge Pump Rotor Dynamics Subjected to Ball Bearing Inner and Outer Race Wear Defects

2020-04-14
2020-01-0403
The purge pump is used to pull evaporative gases from canister and send to engine for combustion in Turbocharged engines. The purge pump with impeller at one end and electric motor at the other end is supported by the ball bearing assembly. A bearing kinematic model to predict forcing function due to defect in ball bearing arrangement, coupled with bearing dynamic model of rotor because of rotating component, is proposed in this paper to get accumulated effect on transmitted force to the purge pump housing. Rotor dynamic of purge pump rotor components only produces certain order forcing responses which can be simulated into the multibody software environment, knowing the ball bearing geometry parameters hence providing stiffness parameter for rotor system.
Technical Paper

Enhancing Engine Starting Performance Using High-Power Density Brushless Starter

2020-04-14
2020-01-0459
Modern hybrid technologies, especially mild and micro-hybrids with auto start/stop feature, demand a starter with higher power, better performance and longer life than conventional brush-type starters. In this paper, a new starter design using a brushless motor is proposed. This improves the engine crank performance during autostarts due to lower inertia, higher torque and wider power band capability of the brushless motor, especially at higher speeds. The overall integrated system includes the motor, inverter and controller all packaged in the same form factor of the original starter housing as a “drop-in replacement”. The prototype starter motor is designed to operate at 48V with a peak power of 4kW but can be designed to operate at the standard 12V. This paper will describe in detail the functionalities of the overall system and the simulation and experimental results of the prototype that was tested on a 4-cylinder engine in a production crossover vehicle.
Technical Paper

Simulation Methodology to Analyze Overall Induction Heat Treatment Process of a Crank Shaft to Determine Effects on Structural Performance

2020-04-14
2020-01-0506
Steel crankshafts are subjected to an induction heat treatment process for improving the operational life. Metallurgical phase transformations during the heat treatment process have direct influence on the hardness and residual stress. To predict the structural performance of a crankshaft using Computer Aided Engineering (CAE) early in the design phase, it is very important to simulate the complete induction heat treatment process. The objective of this study is to establish the overall analysis procedure, starting from capturing the eddy current generation in the crank shaft due to rotating inductor coils to the prediction of resultant hardness and the induced residual stress. In the proposed methodology, a sequentially coupled electromagnetic and thermal model is developed to capture the resultant temperature distribution due to the rotation of the inductor coil.
Technical Paper

Experimental and Numerical Investigation of the Multiphase Flow and Heat Transfer in an Oil Jet Cooled Engine Piston

2020-04-14
2020-01-0165
The piston temperature has to be carefully controlled to achieve effective and efficient thermal management in the internal combustion engines. One of the common methods to cool piston is by injecting oil from the crankcase underside to the piston under-crown area. In the present study, a novel 3-D multiphase thermal-fluid coupled model was developed using the commercial CFD software SimericsMP+ to study the piston cooling using the oil jet. In this model, an algorithm was proposed to couple the fluid and solid computation domain to account for the different timescale of heat transfer in the fluid and solid due to the high thermal inertia of the solid piston. The heat transfer coefficient (HTC) and reference temperature were mapped to the piston top surface and the liner temperature distribution was also used as the boundary condition. The temperature-dependent material properties, piston motion, and thermal contact resistance between the ring and piston were also accounted for.
Technical Paper

Investigation of Fracture Behavior of Deep Drawn Automotive Part affected by Thinning with Shell Finite Elements

2020-04-14
2020-01-0208
In the recent decades, tremendous effort has been made in automotive industry to reduce vehicle mass and development costs for the purpose of improving fuel economy and building safer vehicles that previous generations of vehicles cannot match. An accurate modeling approach of sheet metal fracture behavior under plastic deformation is one of the key parameters affecting optimal vehicle development process. FLD (Forming Limit Diagram) approach, which plays an important role in judging forming severity, has been widely used in forming industry, and localized necking is the dominant mechanism leading to fracture in sheet metal forming and crash events. FLD is limited only to deal with the onset of localized necking and could not predict shear fracture. Therefore, it is essential to develop accurate fracture criteria beyond FLD for vehicle development.
Technical Paper

Dynamics of Water Crossover in Fuel Cell and Application to Freeze Driveaway Reliability

2020-04-14
2020-01-0853
Reliable driveaway from frozen condition is one of the challenging design and control problem for fuel cell applications. Different approaches for warmup from frozen conditions have been developed by OEMs, e.g. low voltage inefficient operation, or use of coolant heaters. However, most methods result in water generation which risk icing and blocking the valves and rendering them nonfunctional till they thaw. One such valve is the anode drain valve which is needed to remove water that crosses over across the membrane to anode side. This work discusses characterization of dynamics of water crossover to anode balance of plant via step response experiments on full scale systems, and development of an online estimator to detect onset of anode water crossover via this online observer. In addition, detection via voltage dip-based feedback is also presented.
Technical Paper

Edge-Quality Effects on Mechanical Properties of Stamped Non-Oriented Electrical Steel

2020-04-14
2020-01-1072
The market for electric vehicles and hybrid electric vehicles is expected to grow in the coming years, which is increasing interest in design optimization of electric motors for automotive applications. Under demanding duty cycles, the moving part within a motor, the rotor, may experience varying stresses induced by centrifugal force, a necessary condition for fatigue. Rotors contain hundreds of electrical steel laminations produced by stamping, which creates a characteristic edge structure comprising rollover, shear and tear zones, plus a burr. Fatigue properties are commonly reported with specimens having polished edges. Since surface condition is known to affect fatigue strength, an experiment was conducted to evaluate the effect of sample preparation on tensile and fatigue behavior of stamped specimens. Tensile properties were unaffected by polishing. In contrast, polishing was shown to increase fatigue strength by approximately 10-20% in the range of 105-107 cycles to failure.
Technical Paper

Random Vibration Fatigue Life Assessment of Transmission Control Module (TCM) Bracket Considering the Mean Stress Effect due to Preload

2020-04-14
2020-01-0194
Transmission Control Module (TCM) bracket is mounted on the vehicle chassis and is subjected to the random load excitation due to the uneven surface of the road. Assembly of the TCM bracket on the vehicle chassis induces some constant stress on it due to bolt preload, which acts as a mean stress along with the varying random loads. It is important for a design engineer and CAE analyst to understand the effect of all sources of loads on vehicle mount brackets while designing them. The objective of this study is to consider the effect of mean stress in the random vibration fatigue assessment of TCM bracket. The random vibration fatigue analyses are performed for all the three directions without and with consideration of mean loads and results are compared to show the significance of mean stresses in random vibration fatigue life.
Journal Article

Vehicle Integration Factors Affecting Brake Caliper Drag

2012-09-17
2012-01-1830
Disc brakes operate with very close proximity of the brake pads and the brake rotor, with as little as a tenth of a millimeter of movement of the pads required to bring them into full contact with the rotor to generate braking torque. It is usual for a disc brake to operate with some amount of residual drag in the fully released state, signifying constant contact between the pads and the rotor. With this contact, every miniscule movement of the rotor pushes against the brake pads and changes the forces between them. Sustained loads on the brake corner, and maneuvers such as cornering, can both produce rotor movement relative to the caliper, which can push it steadily against one or both of the brake pads. This can greatly increase the residual force in the caliper, and increase drag. This dependence of drag behavior on the movement of the brake rotor creates some vehicle-dependent behavior.
Technical Paper

Kriging-Assisted Structural Design for Crashworthiness Applications Using the Extended Hybrid Cellular Automaton (xHCA) Framework

2020-04-14
2020-01-0627
The Hybrid Cellular Automaton (HCA) algorithm is a generative design approach used to synthesize conceptual designs of crashworthy vehicle structures with a target mass. Given the target mass, the HCA algorithm generates a structure with a specific acceleration-displacement profile. The extended HCA (xHCA) algorithm is a generalization of the HCA algorithm that allows to tailor the crash response of the vehicle structure. Given a target mass, the xHCA algorithm has the ability to generate structures with different acceleration-displacement profiles and target a desired crash response. In order to accomplish this task, the xHCA algorithm includes two main components: a set of meta-parameters (in addition target mass) and surrogate model technique that finds the optimal meta-parameter values. This work demonstrates the capabilities of the xHCA algorithm tailoring acceleration and intrusion through the use of one meta-parameter (design time) and the use of Kriging-assisted optimization.
X