Refine Your Search

Topic

Author

Search Results

Technical Paper

In-Depth Considerations for Electric Vehicle Braking Systems Operation with Steep Elevation Changes and Trailering

2021-10-11
2021-01-1263
As the automotive industry prepares to roll out an unprecedented range of fully electric propulsion vehicle models over the next few years - it really brings to a head for folks responsible for brakes what used to be the subject of hypothetical musings and are now pivotal questions for system design. How do we really go about designing brakes for electric vehicles, in particular, for the well-known limit condition of descending a steep grade? What is really an “optimal’ design for brakes considering the imperatives for the entire vehicle? What are the real “limit conditions” for usage that drive the fundamental design? Are there really electric charging stations planned for or even already existing in high elevations that can affect regenerative brake capacity on the way down? What should be communicated to drivers (if anything) about driving habits for electric vehicles in routes with significant elevation change?
Journal Article

Lockheed Martin Low-Speed Wind Tunnel Acoustic Upgrade

2018-04-03
2018-01-0749
The Lockheed Martin Low-Speed Wind Tunnel (LSWT) is a closed-return wind tunnel with two solid-wall test sections. This facility originally entered into service in 1967 for aerodynamic research of aircraft in low-speed and vertical/short take-off and landing (V/STOL) flight. Since this time, the client base has evolved to include a significant level of automotive aerodynamic testing, and the needs of the automotive clientele have progressed to include acoustic testing capability. The LSWT was therefore acoustically upgraded in 2016 to reduce background noise levels and to minimize acoustic reflections within the low-speed test section (LSTS). The acoustic upgrade involved detailed analysis, design, specification, and installation of acoustically treated wall surfaces and turning vanes in the circuit as well as low self-noise acoustic wall and ceiling treatment in the solid-wall LSTS.
Journal Article

Brake System Performance at Higher Mileage

2017-09-17
2017-01-2502
The purchase of a new automobile is unquestionably a significant investment for most customers, and with this recognition, comes a correspondingly significant expectation for quality and reliability. Amongst automotive systems -when it comes to considerations of reliability - the brakes (perhaps along with the tires) occupy a rarified position of being located in a harsh environment, subjected to continuous wear throughout their use, and are critical to the safe performance of the vehicle. Maintenance of the brake system is therefore a fact of life for most drivers - something that almost everyone must do, yet given the potentially considerable expense, it is something that of great benefit to minimize.
Technical Paper

Enhancing Engine Starting Performance Using High-Power Density Brushless Starter

2020-04-14
2020-01-0459
Modern hybrid technologies, especially mild and micro-hybrids with auto start/stop feature, demand a starter with higher power, better performance and longer life than conventional brush-type starters. In this paper, a new starter design using a brushless motor is proposed. This improves the engine crank performance during autostarts due to lower inertia, higher torque and wider power band capability of the brushless motor, especially at higher speeds. The overall integrated system includes the motor, inverter and controller all packaged in the same form factor of the original starter housing as a “drop-in replacement”. The prototype starter motor is designed to operate at 48V with a peak power of 4kW but can be designed to operate at the standard 12V. This paper will describe in detail the functionalities of the overall system and the simulation and experimental results of the prototype that was tested on a 4-cylinder engine in a production crossover vehicle.
Technical Paper

Random Vibration Fatigue Life Assessment of Transmission Control Module (TCM) Bracket Considering the Mean Stress Effect due to Preload

2020-04-14
2020-01-0194
Transmission Control Module (TCM) bracket is mounted on the vehicle chassis and is subjected to the random load excitation due to the uneven surface of the road. Assembly of the TCM bracket on the vehicle chassis induces some constant stress on it due to bolt preload, which acts as a mean stress along with the varying random loads. It is important for a design engineer and CAE analyst to understand the effect of all sources of loads on vehicle mount brackets while designing them. The objective of this study is to consider the effect of mean stress in the random vibration fatigue assessment of TCM bracket. The random vibration fatigue analyses are performed for all the three directions without and with consideration of mean loads and results are compared to show the significance of mean stresses in random vibration fatigue life.
Journal Article

CFD Analysis of VVT/VVA on the Gas Exchange and Fuel-Air Mixing in a Diesel Engine

2008-06-23
2008-01-1635
A three-dimensional simulation was carried out for investigating effects of negative valve overlap (NVO) on gas exchange and fuel-air mixing processes in a diesel homogeneous charge compression ignition (HCCI) engine with early fuel injection. It was found that the case with longer NVO produced a stronger swirl motion and a more significant vortex below the intake valve due to the high annular jet flow through the valve curtain area during the intake stroke. However, there was not much difference in the values of swirl ratio, tumble ratio and turbulence intensity between different NVOs at the end of compression stroke. It was also seen that enlarged NVO not just increased in-cylinder temperature but also improved the temperature homogeneity. With increased NVO, there is a bigger spray shape and more droplets exist in gaps of sprays. This demonstrates that stronger turbulence intensity and higher temperature homogeneity with higher NVO improve fuel vaporization and air-fuel mixing.
Journal Article

Direct Aeroacoustic Simulation of Flow Impingement Noise in an Exhaust Opening

2011-05-17
2011-01-1517
Unusual noises during vehicle acceleration often reflect poorly on customer perception of product quality and must be removed in the product development process. Flow simulation can be a valuable tool in identifying root causes of exhaust noises created due to tailpipe openings surrounded by fascia structure. This paper describes a case study where an unsteady Computational Fluid Dynamics (CFD) simulation of the combined flow and acoustic radiation from an exhaust opening through fascia components provided valuable insight into the cause of an annoying flow noise. Simulation results from a coupled thermal/acoustic analysis of detailed tailpipe opening geometry were first validated with off-axis microphone spectra under wide open throttle acceleration. After studying the visualizations of unsteady flow velocity and pressure from the CFD, a problem that had proved difficult to solve by traditional “cut and try” methods was corrected rapidly.
Journal Article

Vehicle Integration Factors Affecting Brake Caliper Drag

2012-09-17
2012-01-1830
Disc brakes operate with very close proximity of the brake pads and the brake rotor, with as little as a tenth of a millimeter of movement of the pads required to bring them into full contact with the rotor to generate braking torque. It is usual for a disc brake to operate with some amount of residual drag in the fully released state, signifying constant contact between the pads and the rotor. With this contact, every miniscule movement of the rotor pushes against the brake pads and changes the forces between them. Sustained loads on the brake corner, and maneuvers such as cornering, can both produce rotor movement relative to the caliper, which can push it steadily against one or both of the brake pads. This can greatly increase the residual force in the caliper, and increase drag. This dependence of drag behavior on the movement of the brake rotor creates some vehicle-dependent behavior.
Technical Paper

Dynamic Impact Transient Bump Method Development and Application for Structural Feel Performance

2020-04-14
2020-01-1081
Road induced structural feel “vehicle feels solidly built” is strongly related to the vehicle ride [1]. Excellent structural feel requires both structural and suspension dynamics considerations simultaneously. Road induced structural feel is defined as customer facing structural and component responses due to tire force inputs stemming from the unevenness of the road surface. The customer interface acceleration and noise responses can be parsed into performance criteria to provide design and tuning vehicle integration program recommendations. A dynamic impact bump method is developed for vehicle level structural feel performance assessment, diagnostics, and development tuning. Current state of on-road testing has the complexity of multiple impacts, averaging multiple road induced tire patch impacts over a length of a road segment, and test repeatability challenges.
Journal Article

General Motors’ New Reduced Scale Wind Tunnel Center

2017-03-28
2017-01-1534
The General Motors Reduced Scale Wind Tunnel Facility, which came into operation in the fall of 2015, is a new state-of-the-art scale model aerodynamic test facility that expands GM’s test capabilities. The new facility also increases GM’s aerodynamic testing through-put and provides the resources needed to achieve the growing demand for higher fuel economy requirements for next generation of vehicles. The wind tunnel was designed for a nominal model scale of 40%. The nozzle and test section were sized to keep wind tunnel interference effects to a minimum. Flow quality and other wind tunnel performance parameters are on par with or better than the latest industry standards. A 5-belt system with a long center belt and boundary layer suction and blowing system are used to model underbody flow conditions. An overhead probe traverse system is installed in the test section along with a model positioning robot used to move the model in an out of the test section.
Technical Paper

General Motors Full Scale Wind Tunnel Upgrade

2020-04-14
2020-01-0687
The General Motors Aero Lab’s Full-Scale Wind Tunnel Facility, which came into operation in August of 1980[1], has undergone the significant upgrade of installing a state-of-the-art moving ground plane system. After almost four decades of continuous use the full-scale wind tunnel also received some significant maintenance to other areas, including a new heat exchanger, main fan overhaul, and replacement of the test section acoustic treatment. A 5-belt system was installed along with an integrated vehicle lift system. The center belt measures 8.5m long and can accommodate two belt widths of 1100mm and 950mm. Flow quality and other wind tunnel performance parameters were maintained to prior specifications which are on par with the latest industry standards [2]. The new 5-belt rolling road system maintains GM’s industry leading vehicle aerodynamic development and the improved acoustic panels ensure GM continues to develop vehicles with leading class acoustics.
Technical Paper

Corroborative Evaluation of the Real-World Energy Saving Potentials of InfoRich Eco-Autonomous Driving (iREAD) System

2020-04-14
2020-01-0588
There has been an increasing interest in exploring the potential to reduce energy consumption of future connected and automated vehicles. People have extensively studied various eco-driving implementations that leverage preview information provided by on-board sensors and connectivity, as well as the control authority enabled by automation. Quantitative real-world evaluation of eco-driving benefits is a challenging task. The standard regulatory driving cycles used for measuring exhaust emissions and fuel economy are not truly representative of real-world driving, nor for capturing how connectivity and automation might influence driving trajectories. To adequately consider real-world driving behavior and potential “off-cycle” impacts, this paper presents four collaborative evaluation methods: large-scale simulation, in-depth simulation, vehicle-in-the-loop testing, and vehicle road testing.
Technical Paper

Process-Monitoring-for-Quality - A Step Forward in the Zero Defects Vision

2020-04-14
2020-01-1302
More than four decades ago, the concept of zero defects was coined by Phillip Crosby. It was only a vision at the time, but the introduction of Artificial Intelligence (AI) in manufacturing has since enabled it to become attainable. Since most mature manufacturing organizations have merged traditional quality philosophies and techniques, their processes generate only a few Defects Per Million of Opportunities (DPMO). Detecting these rare quality events is one of the modern intellectual challenges posed to this industry. Process Monitoring for Quality (PMQ) is an AI and big data-driven quality philosophy aimed at defect detection and empirical knowledge discovery. Detection is formulated as a binary classification problem, where the right Machine Learning (ML), optimization, and statistics techniques are applied to develop an effective predictive system.
Technical Paper

An Investigative Study of Sudden Pressure Increase Phenomenon Across the SCR on Filter Catalyst

2016-10-17
2016-01-2319
In the previous research1), the authors discovered that the sudden pressure increase phenomenon in diesel particulate filter (DPF) was a result of soot collapse inside DPF channels. The proposed hypothesis for soot collapse was a combination of factors such as passive regeneration, high humidity, extended soak period, high soot loading and high exhaust flow rate. The passive regeneration due to in-situ NO2 and high humidity caused the straw like soot deposited inside DPF channels to take a concave shape making the collapse easier during high vehicle acceleration. It was shown that even if one of these factor was missing, the undesirable soot collapse and subsequent back pressure increase did not occur. Currently, one of the very popular NOx reduction technologies is the Selective Catalytic Reduction (SCR) on Filter which does not have any platinum group metal (PGM) in the washcoat.
Technical Paper

Self-Certification Requirements for Adaptive Driving Beam Headlamps

2017-03-28
2017-01-1365
Vehicle certification requirements generally fall into 2 categories: self-certification and various forms of type approval. Self-certification requirements used in the United States under Federal Motor Vehicle Safety Standards (FMVSS) regulations must be objective and measurable with clear pass / fail criteria. On the other hand, Type Approval requirements used in Europe under United Nations Economic Commission for Europe (UNECE) regulations can be more open ended, relying on the mandated 3rd party certification agency to appropriately interpret and apply the requirements based on the design and configuration of a vehicle. The use of 3rd party certification is especially helpful when applying regulatory requirements for complex vehicle systems that operate dynamically, changing based on inputs from the surrounding environment. One such system is Adaptive Driving Beam (ADB).
Technical Paper

Traditional and Electronic Solutions to Mitigate Electrified Vehicle Driveline Noises

2017-06-05
2017-01-1755
Hybrid powertrain vehicles inherently create discontinuous sounds during operation. The discontinuous noise created from the electrical motors during transition states are undesirable since they can create tones that do not correlate with the dynamics of the vehicle. The audible level of these motor whines and discontinuous tones can be reduced via common noise abatement techniques or reducing the amount of regeneration braking. One electronic solution which does not affect mass or fuel economy is Masking Sound Enhancement (MSE). MSE is an algorithm that uses the infotainment system to mask the naturally occurring discontinuous hybrid drive unit and driveline tones. MSE enables a variety of benefits, such as more aggressive regenerative braking strategies which yield higher levels of fuel economy and results in a more pleasing interior vehicle powertrain sound. This paper will discuss the techniques and signals used to implement MSE in a hybrid powertrain equipped vehicle.
Technical Paper

Modeling the Stiffness and Damping Properties of Styrene-Butadiene Rubber

2011-05-17
2011-01-1628
Styrene-Butadiene Rubber (SBR), a copolymer of butadiene and styrene, is widely used in the automotive industry due to its high durability and resistance to abrasion, oils and oxidation. Some of the common applications include tires, vibration isolators, and gaskets, among others. This paper characterizes the dynamic behavior of SBR and discusses the suitability of a visco-elastic model of elastomers, known as the Kelvin model, from a mathematical and physical point of view. An optimization algorithm is used to estimate the parameters of the Kelvin model. The resulting model was shown to produce reasonable approximations of measured dynamic stiffness. The model was also used to calculate the self heating of the elastomer due to energy dissipation by the viscous damping components in the model. Developing such a predictive capability is essential in understanding the dynamic behavior of elastomers considering that their dynamic stiffness can in general depend on temperature.
Technical Paper

Application of Suspend Mode to Automotive ECUs

2018-04-03
2018-01-0021
To achieve high robustness and quality, automotive ECUs must initialize from low-power states as quickly as possible. However, microprocessor and memory advances have failed to keep pace with software image size growth in complex ECUs such as in Infotainment and Telematics. Loading the boot image from non-volatile storage to RAM and initializing the software can take a very long time to show the first screen and result in sluggish performance for a significant time thereafter which both degrade customer perceived quality. Designers of mobile devices such as portable phones, laptops, and tablets address this problem using Suspend mode whereby the main processor and peripheral devices are powered down during periods of inactivity, but memory contents are preserved by a small “self-refresh” current. When the device is turned back “on”, fully initialized memory content allows the system to initialize nearly instantaneously.
Technical Paper

“Taguchi Customer Loss Function” Based Functional Requirements

2018-04-03
2018-01-0586
Understanding customer expectations is critical to satisfying customers. Holding customer clinics is one approach to set winning targets for the engineering functional measures to drive customer satisfaction. In these clinics, customers are asked to operate and interact with vehicle systems or subsystems such as doors, lift gates, shifters, and seat adjusters, and then rate their experience. From this customer evaluation data, engineers can create customer loss or preference functions. These functions let engineers set appropriate targets by balancing risks and benefits. Statistical methods such as cumulative customer loss function are regularly applied for such analyses. In this paper, a new approach based on the Taguchi method is proposed and developed. It is referred to as Taguchi Customer Loss Function (TCLF).
Technical Paper

Automation in Simulation Process: Simplifying the Complexity in Vehicle Design

2018-04-03
2018-01-0471
General Motors (GM) vehicle design operations group has envisioned that all designers and Design Engineers (DEs) should be able to analyze simple and single components and produce robust subsystem parts to support full vehicle system analysis. This vision is achieved by developing the Smart Simulation Tool (SST) within the Siemens NX CAD system. This tool empowers the designers to take charge of simple parts and produce high quality parts first time. This tool will also make both design and engineering analysis organizations at General Motors more efficient and productive. This paper describes the Smart Simulation Tool that was developed to automate the pre and post processing tasks of the Siemens NX Advanced Simulation process. Generally, the simulation process consumes a lot of designer’s time for building the Finite Element Analysis (FEA) models, typically one to two hours and is very tedious and has the potential for errors.
X