Refine Your Search

Topic

Author

Search Results

Journal Article

Sustainable Manufacturing Analysis using an Activity Based Object Oriented Method

2009-11-10
2009-01-3229
This article begins by describing the need for a new method and tool for performing a sustainability assessment for manufacturing processes and systems. A brief literature survey is done to highlight the major existing methods and tools, their function, and their shortcomings. The article goes on to describe the general approach of the method before describing a computer aided tool that has been developed to implement the method. The article concludes with a walk through of a generic use case that describes where such a method would be useful and how such a tool would be implemented.
Journal Article

Uncertainty Analysis of Static Plane Problems by Intervals

2015-04-14
2015-01-0482
We present a new interval-based formulation for the static analysis of plane stress/strain problems with uncertain parameters in load, material and geometry. We exploit the Interval Finite Element Method (IFEM) to model uncertainties in the system. Overestimation due to dependency among interval variables is reduced using a new decomposition strategy for the structural stiffness matrix and the nodal equivalent load vector. Primary and derived quantities follow from minimization of the total energy and they are solved simultaneously and with the same accuracy by means of Lagrangian multipliers. Two different element assembly strategies are introduced in the formulation: one is Element-by-Element, and the other resembles conventional assembly. In addition, we implement a new variant of the interval iterative enclosure method to obtain outer and inner solutions. Numerical examples show that the proposed interval approach guarantees to enclose the exact system response.
Journal Article

Effects of End-of-Injection Transients on Combustion Recession in Diesel Sprays

2016-04-05
2016-01-0745
End-of-injection transients have recently been shown to be important for combustion and emissions outcomes in diesel engines. The objective of this work is to develop an understanding of the coupling between end-of-injection transients and the propensity for second-stage ignition in mixtures upstream of the lifted diesel flame, or combustion recession. An injection system capable of varying the end-of-injection transient was developed to study single fuel sprays in a newly commissioned optically-accessible spray chamber under a range of ambient conditions. Simultaneous high-speed optical diagnostics, namely schlieren, OH* chemiluminescence, and broadband luminosity, were used to characterize the spatial and temporal development of combustion recession after the end of injection.
Journal Article

Relationship Between Diesel Fuel Spray Vapor Penetration/Dispersion and Local Fuel Mixture Fraction

2011-04-12
2011-01-0686
The fuel-ambient mixture in vaporized fuel jets produced by liquid sprays is fundamental to the performance and operation of engines. Unfortunately, experimental difficulties limit the direct measurement of local fuel-ambient mixture, inhibiting quantitative assessment of mixing. On the other hand, measurement of global quantities, such as the jet penetration rate, is relatively straightforward. Simplified models to predict local fuel-ambient mixture have also been developed, based on these global parameters. However, experimental data to validate these models over a range of conditions is needed. In the current work, we perform measurements of jet global quantities such as vapor-phase penetration, liquid-phase penetration, spreading angle, and nozzle flow coefficients over a range of conditions in a high-temperature, high-pressure vessel.
Journal Article

Power-Split HEV Control Strategy Development with Refined Engine Transients

2012-04-16
2012-01-0629
Power-split hybrid-electric vehicles (HEVs) employ two power paths between the internal combustion (IC) engine and the driven wheels routed through gearing and electric machines (EMs) composing an electrically variable transmission (EVT). The EVT allows IC engine control such that rotational speed can be independent of vehicle speed at all times. By breaking the rigid mechanical connection between the IC engine and the driven wheels, the EVT allows the IC engine to operate in the most efficient region of its characteristic brake specific fuel consumption (BSFC) map. If the most efficient IC engine operating point produces more power than is requested by the driver, the excess IC engine power can be stored in the energy storage system (ESS) and used later. Conversely, if the most efficient IC engine operating point does not meet the power request of the driver, the ESS delivers the difference to the wheels through the EMs.
Technical Paper

Lookie Here! Designing Directional User Indicators across Displays in Conditional Driving Automation

2020-04-14
2020-01-1201
With the advent of autonomous vehicles, the human driver’s attention will slowly be relinquished from the driving task. It will allow drivers to participate in more non-driving related activities, such as engaging with information and entertainment systems. However, the automated driving system would need to notify the driver of upcoming points-of-interest on the road when the driver’s attention is focused on their screen rather than on the road or driving display. In this paper, we investigated whether providing directional alerts for an upcoming point-of-interest (POI) in or around the user’s active screen can augment their ability in relocating their visual attention to the POI on the road when traveling in a vehicle with Conditional Driving Automation. A user study (N = 15) was conducted to compare solutions for alerts that presented themselves in the participants’ central and peripheral field of view.
Journal Article

Transmission Electron Microscopy of Soot Particles Directly Sampled in Diesel Spray Flame - A Comparison between US#2 and Biodiesel Soot

2012-04-16
2012-01-0695
For a better understanding of soot formation and oxidation processes in conventional diesel and biodiesel spray flames, the morphology, microstructure and sizes of soot particles directly sampled in spray flames fuelled with US#2 diesel and soy-methyl ester were investigated using transmission electron microscopy (TEM). The soot samples were taken at 50mm from the injector nozzle, which corresponds to the peak soot location in the spray flames. The spray flames were generated in a constant-volume combustion chamber under a diesel-like high pressure and high temperature condition (6.7MPa, 1000K). Direct sampling permits a more direct assessment of soot as it is formed and oxidized in the flame, as opposed to exhaust PM measurements. Density of sampled soot particles, diameter of primary particles, size (gyration radius) and compactness (fractal dimension) of soot aggregates were analyzed and compared. No analysis of the soot micro-structure was made.
Journal Article

A Novel Approach to Assess Diesel Spray Models using Joint Visible and X-Ray Liquid Extinction Measurements

2015-04-14
2015-01-0941
Spray processes, such as primary breakup, play an important role for subsequent combustion processes and emissions formation. Accurate modeling of these spray physics is therefore key to ensure faithful representation of both the global and local characteristics of the spray. However, the governing physical mechanisms underlying primary breakup in fuel sprays are still not known. Several theories have been proposed and incorporated into different engineering models for the primary breakup of fuel sprays, with the most widely employed models following an approach based on aerodynamically-induced breakup, or more recently, based on liquid turbulence-induced breakup. However, a complete validation of these breakup models and theories is lacking since no existing measurements have yielded the joint liquid mass and drop size distribution needed to fully define the spray, especially in the near-nozzle region.
Technical Paper

Towards Electric Aircraft: Progress under the NASA URETI for Aeropropulsion and Power Technology

2006-11-07
2006-01-3097
The environmental impact of aircraft, specifically in the areas of noise and NOx emissions, has been a growing community concern. Coupled with the increasing cost and diminishing supply of traditional fossil fuels, these concerns have fueled substantial interest in the research and development of alternative power sources for aircraft. In 2003, NASA and the Department of Defense awarded a five year research cooperative agreement to a team of researchers from three different universities to address the design and analysis of revolutionary aeropropulsion technologies.
Technical Paper

Aircraft Control Using Stagnation Point Displacement

1997-10-01
975590
A Stagnation Point Actuator is used to control the lateral dynamics of vortices generated over a sharp-pointed forebody, at high angles of attack, and the resulting rolling moment is studied. Effective roll control is demonstrated, including the ability to suppress the wing rock phenomenon. Piecewise-linear transfer functions are developed from experimental data for the changes in roll moment and pressure difference with actuator frequency content. These transfer functions are reduced to compact form in the frequency domain, and then to a time-domain model using 2 gains and 2 time scales. The roll response is classified according to angle of attack range. Some long time scales are observed in the surface pressure, velocity field and rolling moment, making the response relatively insensitive to speed. Thus over substantial speed ranges, linear transfer functions are shown to effectively describe the roll response to motion of the Stagnation Point Actuator.
Technical Paper

Expanding the Role of the Wind-Driven Manipulator

1997-10-01
975589
The wind-driven dynamic manipulator is a device which uses the wind tunnel freestream energy to drive multi-axis maneuvers of test models. This paper summarizes work performed using the device in several applications and discusses current work on characterizing the aerodynamics of an X-38 vehicle model in pitch-yaw maneuvers. Previous applications in flow visualization, adaptive control and linear-domain parameter identification are now extended to multi-axis inverse force and moment measurement over large ranges of attitude. A pitch-yaw-roll version is operated with active roll to measure forces and moments during maneuvers. A 3-D look-up table generated from direct force calibration allows operation of the manipulator through nonlinear regimes where control wing stall and boom wake-wing interactions are allowed to occur. Hybrid designs combining conventional and wind-driven degrees of freedom are discussed.
Technical Paper

Nonlinear Adaptive Control of Tiltrotor Aircraft Using Neural Networks

1997-10-13
975613
Neural network augmented model inversion control is used to provide a civilian tilt-rotor aircraft with consistent response characteristics throughout its operating envelope, including conversion flight. The implemented response types are Attitude Command Attitude Hold in the longitudinal channel, and Rate Command Attitude Hold about the roll and yaw axes. This article describes the augmentation in the roll channel and the augmentation for the yaw motion including Heading Hold at low airspeeds and automatic Turn Coordination at cruise flight. Conventional methods require extensive gain scheduling with tilt-rotor nacelle angle and airspeed. A control architecture is developed that can alleviate this requirement and thus has the potential to reduce development time. It also facilitates the implementation of desired handling qualities, and permits compensation for partial failures.
Technical Paper

Design and Fabrication of Composite Attach Fitting for Satellite Launch Vehicle

1998-06-02
981837
Compressive load capacity of composite lattice structures are studied. The objective of this research is to investigate the buckling strength of composite lattice structures and to design the most weight efficient structure with the highest buckling load. Buckling strength of both the composite lattice cylindrical and conical shells under axial compressive loads are examined. The main emphasis is placed on the effects of geometric constraints and the optimal design of the structures. In this research, various constraints are studied and the optimal structure which gives the highest strength to weight ratio is obtained. Moreover, these structures can be constructed by filament winding, the manufacturing process can be automated, and the costs can be greatly reduced.
Technical Paper

Design Optimization of a Plug-In Hybrid Electric Vehicle

2007-04-16
2007-01-1545
A plug-in hybrid electric vehicle (PHEV) design with design parameters electric motor size, engine size, battery capacity, and battery chemistry type, is optimized with minimum cost as a measure of merit. The PHEV is required to meet a fixed set of performance constraints consisting of 0-60 mph acceleration, 50-70 mph acceleration, 0-30 mph acceleration in all electric operation, top speed, grade ability, and all electric range. The optimization is carried out for values of all electric range of 10, 20, and 40 miles. The social and economic impacts of the optimum designs in terms of reduced gasoline consumption and carbon emissions reduction are calculated. Argonne National Laboratory's Powertrain Systems Analysis Toolkit is used to simulate the performance and fuel economy of the PHEV designs. The costs of different PHEV components and the present value of battery replacements over the vehicle's life are used to determine the design's drivetrain cost.
Technical Paper

Forecasting the Impact of Technology Infusion on Subsonic Transport Affordability

1998-09-28
985576
The design of complex systems, such as commercial aircraft, has drastically changed since the middle 1970's. Budgetary and airline requirements have forced many aerospace companies to reduce the amount of time and monetary investments in future revolutionary concepts and design methods. The current NASA administration has noticed this shift in aviation focus and responded with the “Three Pillars for Success” program. This program is a roadmap for the development of research, innovative ideas, and technology implementation goals for the next 20 years. As a response to this program, the Aerospace Systems Design Laboratory at Georgia Tech is developing methods whereby forecasting techniques will aid in the proper assessment of future vehicle concepts. This method is called Technology Impact Forecasting (TIF). This method is applied to a medium-range, intra-continental, commercial transport concept.
Technical Paper

Technology Impact Forecasting for a High Speed Civil Transport

1998-09-28
985547
This paper outlines a comprehensive, structured, and robust methodology for decision making in the early phases ofaircraft design. The proposed approach is referred to as the Technology Identification, Evaluation, and Selection (TIES) method. The seven-step process provides the decision maker/designer with an ability to easily assess and trade-off the impact of various technologies in the absence of sophisticated, time-consuming mathematical formulations. The method also provides a framework where technically feasible alternatives can be identified with accuracy and speed. This goal is achieved through the use of various probabilistic methods, such as Response Surface Methodology and Monte Carlo Simulations. Furthermore, structured and systematic techniques are utilized to identify possible concepts and evaluation criteria by which comparisons could be made.
Technical Paper

New Approaches to Conceptual and Preliminary Aircraft Design: A Comparative Assessment of a Neural Network Formulation and a Response Surface Methodology

1998-09-28
985509
This paper critically evaluates the use of Neural Networks (NNs) as metamodels for design applications. The specifics of implementing a NN approach are researched and discussed, including the type and architecture appropriate for design-related tasks, the processes of collecting training and validation data, and training the network, resulting in a sound process, which is described. This approach is then contrasted to the Response Surface Methodology (RSM). As illustrative problems, two equations to be approximated and a real-world problem from a Stability and Controls scenario, where it is desirable to predict the static longitudinal stability for a High Speed Civil Transport (HSCT) at takeoff, are presented. This research examines Response Surface Equations (RSEs) as Taylor series approximations, and explains their high performance as a proven approach to approximate functions that are known to be quadratic or near quadratic in nature.
Technical Paper

An Analytic Foundation for the Two-Mode Hybrid-Electric Powertrain with a Comparison to the Single-Mode Toyota Prius THS-II Powertrain

2009-04-20
2009-01-1321
General Motors has introduced a Two-Mode Transmission (2-MT) that provides significant improvements over the Toyota THS-II transmission. These improvements are achieved by employing additional planetaries with clutches and brakes to switch from a Mode-1 to Mode-2 as vehicle speed increases. In addition the 2-MT has four fixed-gear ratios that provide for a purely mechanical energy path from the IC engine to the driven wheels with the electric machines also able to provide additional driving torque. The purpose of this present paper is to extend the methodology in a previous paper [1] to include the 2-MT, thereby presenting an analytic foundation for its operation. The main contribution in this analysis is in the definition of dimensionless separation factors, defined in each mode that govern the power split between the parallel mechanical and electrical energy paths from the IC engine to the driven wheels.
Technical Paper

A Dynamic Surrogate Model Technique for Power Systems Modeling and Simulation

2008-11-11
2008-01-2887
Heterogeneous physical systems can often be considered as highly complex, consisting of a large number of subsystems and components, along with the associated interactions and hierarchies amongst them. The simulation of a large-scale, complex system can be computationally expensive and the dynamic interactions may be highly nonlinear. One approach to address these challenges is to increase the computing power or resort to a distributed computing environment. An alternative to improve the simulation computational performance and efficiency is to reduce CPU required time through the application of surrogate models. Surrogate modeling techniques for dynamic simulation models can be developed based on Recurrent Neural Networks (RNN).This study will present a method to improve the overall speed of a multi-physics time-domain simulation of a complex naval system using a surrogate modeling technique.
Technical Paper

Activity Based Approach to Manufacturing Systems Modeling

2010-04-12
2010-01-0277
This paper looks at a method for decomposing a manufactured product into what is called an “activity space.” The method uses an activity based costing scheme to structure the model and organize the information. It is discussed how the activity space is used to perform sustainability assessments of a manufactured product and the manufacturing process from different viewpoints and perspectives. The way in which the activity space is used to perform an assessment from several viewpoints is discussed.
X