Refine Your Search

Topic

Search Results

Technical Paper

Optimal Design for Maximum Fundamental Frequency and Minimum Intermediate Support Stiffness for Uniform and Stepped Beams Composed of Different Materials

2020-02-06
2020-01-5014
The minimum support stiffness that achieves the maximum modal frequencies or critical speed is very important in the design of mechanical systems. The optimal values of the intermediate support stiffness and geometrical parameters of uniform and stepped Timoshenko beams composed of single or two materials are studied in order to maximize the modal frequency and minimize the intermediate support stiffness. Dynamic stiffness matrix (DSM) method and multi-objective particle swarm optimization (MOPSO) algorithm are used together to evaluate new optimal parameters. For single material, the results show that for uniform thick beams, the optimal maximum fundamental frequency and minimum intermediate support stiffness are lower than those of Bernoulli-Euler beams. In addition, the optimal design for stepped beams made of two metallic materials is investigated. For three different metallic combinations, gain factors of 1.561 to 2.745 are obtained for a beam without intermediate support.
Technical Paper

Performance and Noise of Dual Fuel Engine Running on Cottonseed, Soybean Raw Oils and Their Methyl Esters as Pilot Fuels

2020-04-14
2020-01-0811
The cottonseed oil, soybean oil and their methyl esters have been used as a pilot fuels for dual fuel engine running on the LPG as the main fuel. A variable compression research diesel engine has been converted to run on dual fuel of LPG and a pilot fuel derived from the renewable liquid fuels above. The engine has been instrumented to measure the combustion pressure, crank angles, exhaust temperature, flow rates of air, pilot fuel and gaseous fuel. The effects of changing the following parameters have been studied: the mass of pilot fuel, the mass of gaseous fuel, the pilot fuel injection timing, engine speed and the pilot fuel type. Five different pilot fuels has been tested here namely the cottonseed raw oil, the cottonseed methyl ester, the soybean raw oil, the soybean methyl ester and the diesel fuel as a reference fuel.
Journal Article

Application of Nonparametric Magnetorheological Damper Model in Vehicle Semi-active Suspension System

2012-04-16
2012-01-0977
Nonparametric models do not require any assumptions on the underlying input/output relationship of the system being modeled so that they are highly useful for studying and modeling the nonlinear behaviour of Magnetorheological (MR) fluid dampers. However, the application of these models in semi-active suspension is very rare and most theoretical works available on this topic address the application of parametric models (e.g. Modified Bouc-Wen model). In this paper, a nonparametric MR damper model based on the Restoring Force Surface technique is applied in vehicle semi-active suspension system. It consists of a three dimensional interpolation using Chebyshev orthogonal polynomial functions to simulate the MR damper force as a function of the displacement, velocity and input voltage. Also, a damper controller based on a Signum function method is proposed, for the first time, for use in conjunction with the system controller of a semi-active vehicle suspension.
Technical Paper

Influence of Active Suspension Preview Control on the Vehicle Lateral Dynamics

2007-05-15
2007-01-2347
The dynamics of vehicles became one of the most important aspects for current developments of electronically controlled steering, suspension and traction/braking systems. However, most of the published research on vehicle maneuverability doesn't take into account the effect of the dynamic tire load and its variation on uneven roads. Clearly, it was stated that using a suitable active suspension system could reduce this dynamic tire load. This dynamic tire load is playing a vital role as it is the major link between the vertical and lateral forces exerted on the road, which affects the lateral dynamics of the vehicle. In this paper, a practical hydro-pneumatic limited bandwidth active suspension system with and without wheelbase preview control is used to study its influence on the vehicle stability in lateral direction. The model is a longitudinal half car with four degrees of freedom.
Technical Paper

Injection Characteristics of Rapeseed Methyl Ester versus Diesel Fuel in Pump-Line-Nozzle Injection System

2008-06-23
2008-01-1590
The transformation of rapeseed oil into methyl ester through the transestrification process normally produce biodiesel fuel with kinematic viscosity almost double that of the commercial diesel fuel. The bulk modulus of biodiesel is also higher than that for the conventional diesel fuel. In this paper, the effects of the two physical properties on the injection characteristics of Rapeseed Methyl Ester (RME) are discussed. The injection characteristics considered here were namely; nozzle chamber pressure, needle lift, and fuel injection rate. The mutual effects of engine speed and delivery pipe length were also analyzed. A previously developed computer model was used to simulate the injection process of the conventional pump-line-nozzle injection system. An explicit finite difference scheme was adopted to solve the unsteady flow equation within the delivery pipe.
Technical Paper

Road Humps Design Improvement Using Genetic Algorithms

2009-04-20
2009-01-0466
The number of speed humps (sleeping policemen) has seen a global increase in the last decade. This paper addresses the geometric requirements of these humps using Genetic Algorithms optimization techniques to control the speed, stability, and ride feel of the traversing vehicles. The interaction between road hump profile and the modeled vehicles (passenger and a two-axle truck) are studied with a dynamic model. The shape of the proposed profile is described by numbers of amplitudes of harmonic functions. The extreme acceleration of the drivers’ seats of the vehicles traversing the hump is set as multiobjective function for the optimization process, taking into consideration the road-holding ability represented by the tire lift-off speed. The results show that hump geometry can be improved while fulfilling the requirements of speed control and vehicle dynamic responses.
Technical Paper

Influence of Surface Modifications on Vehicle Disc Brake Squeal

2009-06-15
2009-01-1977
Squeal from brakes is a problem in the automotive industry and large efforts are made to understand the squeal tendencies. The approach taken is mainly to change the design of the caliper, fine-tune the brake pad material and finally to trim the introducing shims on the backside of the pads. Despite these efforts still no general solutions exist. To advance the situation, a deeper understanding of the actual source of excitation of the sound in the friction interface is needed. However, in the present investigation the surfaces modifications of brake disc and pad have been tested with respect to the understanding properties. The surfaces modifications are slotted pad material and coated disc. All tests have been made in a brake test stand consisting of a complete front wheel corner of a vehicle. The changes have resulted in a significant understand of the generated noise.
Technical Paper

Effect of Laterally Banked Roadways on the Rollover Threshold of Partially Filled Road Tankers

2003-11-10
2003-01-3387
In this paper, a direct technique to estimate the rollover threshold limits of partially filled tank trucks is applied for banked roadways. Overturning and restoring moments are calculated as functions of tank shape, fill level, gradient of both liquid cargo free surface and the lateral inclination of banked road surfaces. The static rollover threshold of tanker trucks traveling on laterally banked roadways is estimated by balancing the net value of the total overturning moment against the net value of the restoring moment. Different filling ratios are considered for circular, elliptical and modified tank vehicles. The rollover threshold limits are calculated considering a superelevation range of (0.0-0.1) for the lateral road banking as defined by Blue and Kulakowski (1991). It is shown that the vehicle rollover threshold limit increases with an increase of the angle of the lateral road banking.
Technical Paper

On the Analysis of Drum Brake Squeal Using Finite Element Methods Technique

2006-10-31
2006-01-3467
Many basic studies were conducted to discover the main reason for squeal occurrence in both disc and drum brake systems. As, it is well-known that the squealed brake system is more effective than the non-squealed brake system and it is also a common discomfort. So, cancellation of the squeal is not preferable, however, elimination of the brake squeal is a favorable. An approach to study the drum brake squeal is presented based mainly on the Finite Element Method (FEM) representation. The brake system model is based also on the model information extracted from finite element models for individual brake components. This finite element method (FEM) was used to predict the mode shape and natural frequency of the brake system after appropriate verification of FEM.
Technical Paper

A New Empirical Formula for Calculating Vehicles' Frontal Area

2011-04-12
2011-01-0763
The main objective of this research is to find a general empirical formula to predict vehicle frontal area applied to most types of vehicles. This was done on 21 vehicles; passenger cars, buses and trucks by calculating their frontal area by using image processing technique on cars photos extracted from catalogues. The software (Data Fit) is used to establish the required empirical formula. The results showed that the empirical formula is simple and accurate enough for finding out the vehicles frontal areas.
Technical Paper

Analysis of Ventilated Disc Brake Squeal Using a 10 DOF Model

2012-09-17
2012-01-1827
Squeal of disc brakes is considered as a main source of discomfort for passengers. Typically 1 to 4 kHz noise is considered low frequency squeal and ≻8 kHz noise is considered high frequency squeal. It is a significant problem in passenger vehicles for the comfort of the passengers and a significant financial problem for industry too. Many manufacturers of brake pad materials spend up to fifty percent of their engineering budgets on noise, vibration and harshness (NVH) issues. Squeal noise is strongly correlated to the squeal index and degree of instability of the brake system assembly. Decreasing this squeal noise to some extent during braking is very important matter for the comfort of passengers. So, a mathematical prediction model of 10-degree-of-freedom has been developed to study the effect of different brake components parameters on the degree of instability and squeal index of the brake system.
Technical Paper

A Preview Type-2 Fuzzy Controller Design for the Semi-active Suspension to Improve Adhesion Characteristics during Braking and Handling

2021-06-28
2021-01-5069
A full vehicle of a preview control semi-active suspension system based on an interval type-2 fuzzy controller design using a magnetorheological (MR) damper to improve ride comfort is investigated in this paper. It is integrated with the force distribution system to obtain the optimal rate of road adhesion during braking and handling. The nonlinear suspension model is derived by considering vertical, pitch, and roll motions. The preview interval type-2 fuzzy technique is designed as a system controller, and it is attached with a Signum function method as a damper controller to turn on the voltage for the MR damper. This voltage is adjusted for each wheel based on the external excitation generated by road roughness in order to enhance ride comfort. To describe the effectiveness and adaptable responses of the preview controlled semi-active system, the performance is compared with both the passive and MR passive suspension systems during time and frequency domains.
Technical Paper

Investigation of Different Parameter Based Control Strategies for Active Independent Front Steering (AIFS) System

2021-04-06
2021-01-0967
The previous research work on Active Independent Front Steering (AIFS) system concluded an enhanced vehicle response and tire adhesion utilization. Some research emphasizes the importance of Tire Work load (TWL) in the generation of maximum possible tire forces that ensures vehicle controllability and stability. In this study, a mathematical model is constructed to investigate the effect of TWL as a parameter on AIFS performance. Toward such a target, a new Fuzzy control strategy is developed based on TWL and vehicle yaw rate as control inputs for the AIFS controller. Unfortunately, the TWL is not a measurable parameter or even easy to be estimated. Consequently, another control strategy was implemented based on slip angle and vehicle yaw rate as inputs for the AIFS controller.
Technical Paper

Studying the Effect of Pad Contact Surface on the Frictional Behavior and Acoustic Noise Response for Heavy Duty Vehicle Brakes Using FAST Machine

2006-09-12
2006-01-3131
The influence of the pad contact surface deformation for vehicle brakes on its frictional behavior and friction induced noise is presented in this paper. Friction composite samples of organic binder-type brake pad have been curried out at 17 MPa and 180 °C for heavy-duty applications. However, samples with different surface shapes (solid, drilled and grooved) have been formed and tested tribologically to satisfy suitable friction coefficient at low noise level. A FAST machine was used to find out the accurate friction response at steady frictional moment. Friction acoustic noise has been carried out on the test machine using the sound pressure level meter. Analyses of the obtained results showed that the feature of the pad material surface has a significant influence on the brake frictional stability and noise emission. The results also confirmed that; adding a groove to the brake lining in heavy-duty vehicles gives a better brake performance and hence it is highly recommended.
Technical Paper

Hybrid Shape Optimization and Failure Analysis of Laminated Fibrous Composite E-Springs for Vehicle Suspension

2006-10-31
2006-01-3586
A hybrid search optimization is presented in order to optimize hybrid laminated fibrous composite E-springs for vehicle suspension systems. This optimization is conducted with both of the geometrical configuration and laminate structure of the E-spring. A genetic algorithm along with a hill-climbing random-walk approach are used through a developed NURBS-based technique in order to conduct this optimization. A mathematical-modeling-based mid-ware technology is introduced in order to fully automate the optimization process through linking the run engines of mathematical modeling and finite element analysis from within the mathematical modeling engine. A hybrid approach of the inter-laminar shear stress and Tsai-Wu criteria is first implemented in order to identify failure indices of the resulting optimum shape and laminate structure.
Technical Paper

Dynamic Lively Model to Utilize the Resources in a Vehicle

2006-04-03
2006-01-0521
The work presented here is to develop a monitoring life mathematical model to manage periodically the operations job orders of vehicle service station. This period is occasionally an hour, a day or a longer period than that, and is normally determined by the service manager. Model parameters are changeable over these periods due to dynamic movable situation of a vehicle markets. The objective function is to maximize the total income from vehicles service operations at all considered conventional model or with self expert prognostic system by taken into account least stop of vehicles, while keeping in mind the satisfying the customer demands and the service quality. The decision variables indicate the number of various technical operations to be performed for different types of vehicles.
Technical Paper

Optimized PID Controller Using Genetic Algorithm for Anti-lock Brake System

2023-04-11
2023-01-0696
The anti-lock brake system (ABS) is a vital system in modern vehicles that prevents automotive wheels from locking during an emergency brake. This paper aims to introduce an efficient, optimized proportional integral derivative (PID) controller tuned using a genetic algorithm (GA) to enhance the performance of ABS. The PID control method is a very famous control algorithm employed in numerous engineering applications. The GA is used to solve the nonlinear optimization problem and search for the optimum PID controller gains by identifying the solution to the problem. A mathematical model of ABS is derived and simulated using Matlab and Simulink software. The proposed optimized PID-controlled ABS is compared to the conventional ABS controlled using a Bang-Bang controller. System performance criteria are evaluated and assessed under different road adhesion coefficient values to judge the success of the proposed PID controller tuned using GA.
Technical Paper

Optimized Proportional Integral Derivative Controller of Vehicle Active Suspension System Using Genetic Algorithm

2018-04-03
2018-01-1399
Proportional integral derivative (PID) control method is an effective, easy in implementation and famous control technique applied in several engineering systems. Also, Genetic Algorithm (GA) is a suitable approach for optimum searching problems in science, industrial and engineering applications. This paper presents the usage of GA for determining the optimal PID controller gains and their implementation in the active quarter-vehicle suspension system to achieve good ride comfort and vehicle stability levels. The GA is applied to solve a combined multi-objective (CMO) problem to tune PID controller gains of vehicle active suspension system for the first time. The active vehicle suspension system is modeled mathematically as a two degree-of-freedom mechanical system and simulated using Matlab/Simulink software.
Technical Paper

On The Integration of Actively Controlled Longitudinal/Lateral Dynamics Chassis Systems

2014-04-01
2014-01-0864
Integral Control strategy for vehicle chassis systems had been of great interest for vehicle designers in the last decade. This paper represents the interaction of longitudinal control and lateral control. In other words the traction control system and handling control system. Definitely, tire properties are playing a vital role in such interaction as it is responsible for the generated forces in both directions. A seven degrees of freedom half vehicle model is derived and used to investigate this interaction. The vehicle body is represented as a rigid body with three degrees of freedom, lateral and longitudinal, and yaw motions. The other four degrees are the two rotation motion of the front wheel and the rear wheel. This two motions for each wheel are spin motion and the steering motion. The traction controller is designed to modulate engine torque through adjusting the throttle angle of the engine upon utilized adhesion condition at the driving road wheels.
Technical Paper

Effect of Semi-active Suspension Controller Design Using Magnetorheological Fluid Damper on Vehicle Traction Performance

2020-10-30
2020-01-5101
In order to achieve the high capability of the ride comfort and regulating the tire slip ratio, a preview of a nonlinear semi-active vibration control suspension system using a magnetorheological (MR) fluid damper is integrated with traction control in this paper. A controlled semi-active suspension system, which consists of the system controller and damper controller, was used to develop ride comfort, while the traction controller is utilized to reduce a generated slip between the vehicle speed and rotational rate of the tire. Both Fractional-Order Filtered Proportional-Integral-Derivative (P¯IλDμ) and Fuzzy Logic connected either series or parallel with P¯IλDμ are designed as various methodologies of a system controller to generate optimal tracking of the desired damping force. The signum function method is modified as a damper controller to calculate an applied input voltage to the MR damper coil based on both preview signals and the desired damping force tracking.
X