Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Abnormal Combustion Induced by Combustion Chamber Deposits Derived from Engine Oil Additives in a Spark-Ignited Engine

2014-11-11
2014-32-0091
Although metallic compounds are widely known to affect combustion in internal combustion engines, the potential of metallic additives in engine oils to initiate abnormal combustion has been unclear. In this study, we investigated the influence of combustion chamber deposits derived from engine oil additives on combustion in a spark-ignited engine. We used a single-cylinder four-stroke engine, and measured several combustion characteristics (e.g., cylinder pressure, in-cylinder ultraviolet absorbance in the end-gas region, and visualized flame propagation) to evaluate combustion anomalies. To clarify the effects of individual additive components, we formed combustion products of individual additives in a combustion chamber prior to measuring combustion characteristics. We tested three types of metallic additives: a calcium-based detergent, a zinc-based antiwear agent, and a molybdenum-based friction modifier.
Journal Article

Development of a Fuel Economy and Exhaust Emissions Test Method with HILS for Heavy-Duty HEVs

2008-04-14
2008-01-1318
The objective of this study was to develop a test method for heavy-duty HEVs using a hardware-in-the-loop simulator (HILS) to enhance the type-approval-test method. To achieve our objective, HILS systems for series and parallel HEVs were actually constructed to verify calculation accuracy. Comparison of calculated and measured data (vehicle speed, motor/generator power, rechargeable energy storage system power/voltage/current/state of charge, and fuel economy) revealed them to be in good agreement. Calculation error for fuel economy was less than 2%.
Journal Article

Diesel Engine Emissions and Performance Optimization for Neat GTL Fuel

2008-04-14
2008-01-1405
The emissions reduction potential of neat GTL (Gas to Liquids: Fischer-Tropsch synthetic gas-oil derived from natural gas) fuels has been preliminarily evaluated by three different latest-generation diesel engines with different displacements. In addition, differences in combustion phenomena between the GTL fuels and baseline diesel fuel have been observed by means of a single cylinder engine with optical access. From these findings, one of the engines has been modified to improve both exhaust emissions and fuel consumption simultaneously, assuming the use of neat GTL fuels. The conversion efficiency of the NOx (oxides of nitrogen) reduction catalyst has also been improved.
Technical Paper

Electronically Controlled Mechanical Automatic Transmission for Heavy Duty Trucks and Buses

1986-10-20
861050
Hino Motors had developed an electronically controlled mechanical automatic transmission and employed it for the ′85 models of large size buses, and also ′86 models of heavy/ medium duty trucks. This system gives minimum fuel consumption and even smoother/easier driving than an automatic transmission with torque converter, by controlling an engine also with a transmission and employing an oil spray clutch. The trade name of this system is EE-Drive which means easy and economy drive.
Technical Paper

Development of Diesel Particulate Trap Systems for City Buses

1991-02-01
910138
Diesel particulate trap systems are one of the effective means for the control of particulate emission from diesel vehicles. Hino has been researching and developing various diesel particulate trap systems for city buses. This paper describes two of the systems. One uses a wall flow filter equipped with an electric heater and a sensing device for particulate loading for the purpose of filter regeneration. Another makes use of a special filter named “Cross Flow Filter” with an epoch-making regeneration method called “Reverse Jet Cleaning”, by which it becomes possible to separate the part for particulate burning from the filter. Both systems roughly have come to satisfy the functions of trap systems for city buses, but their durability and reliability for city buses are not yet sufficient.
Journal Article

Influence of Ca-, Mg- and Na-Based Engine Oil Additives on Abnormal Combustion in a Spark-Ignition Engine

2015-11-17
2015-32-0771
One issue of downsized and supercharged engines is low-speed pre-ignition (LSPI) that occurs in the low-speed and high-load operating region. One proposed cause of LSPI is the influence of the engine oil and its additives. However, the effect of engine oil additives on pre-ignition and the mechanism involved are still not fully understood. This study investigated the influence of engine oil additives on abnormal combustion in a spark-ignition engine. A four-stroke air-cooled single-cylinder engine with a side valve arrangement was used in conducting combustion experiments. The research methods used were in-cylinder pressure analysis, in-cylinder visualization and absorption spectroscopic analysis. Engine oil additives were mixed individually at a fixed concentration into a primary reference fuel with an octane number of 50 and their effect on knocking was investigated.
Journal Article

Effect of Fischer-Tropsch Diesel on Fuel Supply System

2011-08-30
2011-01-1950
This paper investigates the effects of Fischer-Tropsch Diesel (FTD) (a completely a paraffinic fuel) on the fuel supply system in automotive applications. In particular, the effects of Gas to Liquid (GTL) (an FTD synthesized from natural gas) on the elastomer components has been investigated by laboratory scale tests and field trials. In the field trials, GTL was supplied to a commercial vehicle operator and the effect of real running conditions was observed. Also, the laboratory scale testing to simulate the actual condition of usage of a commercial vehicle was conducted under stringent conditions, and a correlation with the field trials was investigated. As a result, no negative effects related to GTL were found.
Technical Paper

Development of Diesel Combustion for Commercial Vehicles

1997-08-06
972685
Historically the high speed diesel engine for commercial vehicles has been developed along with its combustion system in compliance with political and economical changes. After the 1970's, stricter exhaust emission regulations and fuel economy requirements induced combustion developments and application of turbocharged and inter cooled engines. From the late 1980's, high pressure fuel injection has been investigated and recognized as an essential tool for lowering emissions especially of particulate matter. Although turbulence effects on both in-cylinder air motion and during the combustion process are quite effective, they show different phenomena in conventional and advanced high pressure fuel injection systems. In the 1990's, multiple injection with high pressure has been attempted for further reduction of NOx and particulate matter.
Technical Paper

Nano Particle Emission Evaluation of State of the Art Diesel Aftertreatment Technologies (DPF, urea-SCR and DOC), Gasoline Combustion Systems (Lean Burn / Stoichiometric DISI and MPI) and Fuel Qualities Effects (EtOH, ETBE, FAME, Aromatics and Distillation)

2007-10-29
2007-01-4083
Newly designed laboratory measurement system, which reproduces particle number size distributions of both nuclei and accumulation mode particles in exhaust emissions, was developed. It enables continuous measurement of nano particle emissions in the size range between 5 and 1000 nm. Evaluations of particle number size distributions were conducted for diesel vehicles with a variety of emission aftertreatment devices and for gasoline vehicles with different combustion systems. For diesel vehicles, Diesel Oxidation Catalyst (DOC), urea-Selective Catalytic Reduction (urea-SCR) system and catalyzed Diesel Particulate Filter (DPF) were evaluated. For gasoline vehicles, Lean-burn Direct Injection Spark Ignition (DISI), Stoichiometric DISI and Multi Point Injection (MPI) were evaluated. Japanese latest transient test cycles were used for the evaluation: JE05 mode driving cycle for heavy duty vehicles and JC08 mode driving cycle for light duty vehicles.
Technical Paper

JCAPII Cross Check Tests of Fast Electrical Mobility Spectrometers for Evaluation of Accuracy

2007-10-29
2007-01-4081
Crosscheck tests of fast electrical mobility spectrometers, Differential Mobility Spectroscopy (DMS) and Engine Exhaust Particle Sizer(EEPS), were conducted to evaluate the accuracy of fine particle measurement. Two kinds of particles were used as test particles for the crosscheck test of instruments: particles emitted from diesel vehicles and diluted in a full dilution tunnel, and particles generated by CAST. In the steady state tests, it was confirmed that the average concentration of each instrument was within the range of ±2σ from the average concentration of all the same type of instruments. In the transient tests, it is verified that the instruments have almost equal sensitivity. For application of the fast electrical mobility spectrometers to evaluation of particle number and size distributions, it is essential to develop a calibration method using reference particle counters and sizers (CPC, SMPS, etc.) and maintenance methods appropriate for each model.
Technical Paper

The Visualization and Its Analysis of Combustion Flame in a DI Diesel Engine

1998-02-23
980141
Since in-cylinder flame temperature has a direct effect on an engine's NOx characteristics, these phenomena have been studied in detail in a DI diesel engine using a newly developed method allowing the in-cylinder temperature distribution to be measured by the two color method. The flame light introduced from the visualized combustion chamber of the engine is divided into two colors by filters. The images of combustion phenomena using the two wavelengths are recorded with a framing streak camera which includes a CCD camera. The flame temperature is immediately calculated by a computer using two color images from the CCD camera. A parameter study was then carried out to determine the influence of intake valve number of the engine, and fuel injection rate (pilot injection) on the in-cylinder temperature distribution.
Technical Paper

Advanced Safety Technologies for Large Trucks

2007-08-05
2007-01-3589
Large truck accidents sometimes result in severe damages or give large disturbance of traffic and there are demands of improving vehicle safety characteristics. Main types of traffic accidents concerned are rear-end collision and single accident. As countermeasures for rear-end collisions, world-first collision mitigation brake for commercial vehicles; Pre-crash Safety System, was developed. If there is possibility of collision, warning to driver and brake control intervention is carried out in stepwise fashion and collision speed is decreased. To achieve higher effect in collision mitigation, it is necessary to activate warning or brake-force in earlier timing. Inter-vehicle or infrastructure-vehicle communication offer promising prospect. Tractor-trailer combinations show some instable behaviors. “Roll Stability Assist” and “Vehicle Stability Control” were developed to assist drivers to avoid the occurrence of these instable behaviors.
Technical Paper

Energy Regeneration of Heavy Duty Diesel Powered Vehicles

1998-02-23
980891
The objective of this study is to improve fuel economy and reduce carbon dioxide emissions in diesel-electric hybrid automotive powertrains by developing an exhaust gas turbine generator system which utilizes exhaust gas energy from the turbocharger waste gate. The design of the exhaust gas turbine generator was based on a conventional turbocharger for a direct-injection diesel engine. Data from steady-state bench tests using air indicates about 50% of the turbine input energy can be converted to electric energy. Turbine generator output averaged 3 kW, while a maximum of about 6 kW was observed. Based on this data, we estimate that energy consumption in a vehicle could be reduced between 5% and 10%. Engine tests were conducted under both steady-state and transient conditions. These tests revealed that optimal performance occurred under high-speed, high-load conditions, typical of highway or uphill driving, and that performance at low-speed, low-loads was relatively poor.
Technical Paper

Fuel Saving Four-Stroke Engine Oil for Motorcycles

2006-11-13
2006-32-0014
Energy conserving performance by engine oils is required even for motorcycles from the viewpoint of environmental issues. The fuel efficiency of passenger car engine oils has been improved through lower viscosity and usage of friction modifiers. However, engine oils containing friction modifiers such as Mo compounds may not be applied to four-stroke motorcycles, because motorcycles normally have a wet clutch system inside the crankcase and such engine oils can decrease the clutch capacity. Therefore, it is important to investigate the effects of oil formulation in order to develop motorcycle engine oils, which can improve fuel efficiency and preserve clutch capacity1)∼2). In this study, fuel efficiency of prototype oils was evaluated with a motorcycle engine motoring tester. In addition, friction coefficients of engine oils formulated with different additives such as dispersants and detergents in clutch system were evaluated with an SAE No. 2 clutch friction tester.
Technical Paper

The Study of NOx and PM Reduction Using Urea Selective Catalytic Reduction System for Heavy Duty Diesel Engine

2007-04-16
2007-01-1576
To reduce NOx and Particulate Matter (PM) emissions from a heavy-duty diesel engine, the effects of urea selective catalytic reduction (SCR) systems were studied. Proto type urea SCR system was composed of NO oxidation catalyst, SCR catalyst and ammonia (NH3) reduction catalyst. The NOx reduction performance of urea SCR system was improved by a new zeolite type catalyst and mixer for urea distribution at the steady state operating conditions. NOx and PM reduction performance of the urea SCR system with DPF was evaluated over JE05 mode of Japan. The NOx reduction efficiency of the urea SCR catalyst system was 72% at JE05 mode. The PM reduction efficiency of the urea SCR catalyst system with DPF was 93% at JE05 mode. Several kinds of un-regulated matters were detected including NH3 and N2O leak from the exhaust gas. It is necessary to have further study for detailed measurements for un-regulated emissions from urea solution.
Technical Paper

A New Concept for Low Emission Diesel Combustion (2nd Rep. : Reduction of HC and CO Emission, and Improvement of Fuel Consumption by EGR and MTBE Blended Fuel)

1998-08-11
981933
A new concept for diesel combustion has been investigated by means of engine experiments and combustion observations in order to realize a simultaneous reduction of NOx and particulate emissions. The concept is based on pre-mixed compression ignition combustion combined with multiple injection. In this method, some part of fuel is injected at an early stage of the process to form a homogeneous lean pre-mixture, then the remaining fuel is injected at around the TDC in the same manner as a conventional diesel injection. The emissions, ROHR (rate of heat release), and combustion pictures of conventional combustion, pilot injection combustion, and this new combustion concept were compared and analyzed. Engine tests were carried out using a single cylinder research engine equipped with a common rail injection system.
Technical Paper

Combustion Optimization by Means of Common Rail Injection System for Heavy-Duty Diesel Engines

1998-10-19
982679
This paper describes the combustion optimizations of heavy-duty diesel engines for the anticipated future emissions regulations by means of an electronically controlled common rail injection system. Tests were conducted on a turbocharged and aftercooled (TCA) prototype heavy-duty diesel engine. To improve both NOx-fuel consumption and NOx-PM trade-offs, fuel injection characteristics including injection timing, injection pressure, pilot injection quantity, and injection interval on emissions and engine performances were explored. Then intake swirl ratio and combustion chamber geometry were modified to optimize air-fuel mixing and to emphasize the pilot injection effects. Finally, for further NOx reductions, the potentials of the combined use of EGR and pilot injection were experimentally examined. The results showed that the NOx-fuel consumption trade-off is improved by an optimum swirl ratio and combustion chamber geometry as well as by a new pilot concept.
Technical Paper

Development of “Camion” Truck Winner at '97 Dakar Rally

1998-11-16
983065
In the '97 Dakar Rally, Hino FT model, 8,000cc engine truck, won 1st, 2nd and 3rd places by defeating upper class trucks having engine of 19,000cc. The average speed of the '97 Hino model was increased more than 15 km/h over the '96 model by improving the riding comfort and handling stability. Larger diameter tires, and softer parabolic leaf springs with long and inclined axle-locus for reducing road impact, gas charged dampers, suspension rods which control compliance-steer-motion and wind-up motion of unsprung masses were adopted for the '97 model.
Technical Paper

Performance of Motorcycle Engine Oil with Sulfur-Based Additive as Substitute Zn-DTP

2008-09-09
2008-32-0005
Just as CO2 reduction is required of four wheeled vehicles for environmental protection, similar environmental concerns drive the development of motorcycle oil technology. Zinc dialkyldithiophosphate (Zn-DTP) type additives are widely used for engine oil formulations. However, phosphorus compounds are environmental load materials. The reduction of the quantity of phosphorus compounds in engine oils is required to reduce poisoning of three-way catalysts used to purify exhaust gases from internal combustion engines. Mr. Ito and his co-authors1) reported that they developed a sulfur-based additive as a substitute for Zn-DTP. Their non-phosphorus engine oil formulation for four-wheeled vehicles with a sulfur-based additive was examined to evaluate its anti-wear performance using the following test methods:JASO M328 for gasoline engines (KA24E) and JASO M354 for Diesel engine (4D34T4).
Technical Paper

Impact Study of High Biodiesel Blends on Exhaust Emissions to Advanced Aftertreatment Systems

2010-04-12
2010-01-1292
In Biodiesel Fuel Research Working Group(WG) of Japan Auto-Oil Program(JATOP), some impacts of high biodiesel blends have been investigated from the viewpoints of fuel properties, stability, emissions, exhaust aftertreatment systems, cold driveability, mixing in engine oils, durability/reliability and so on. In the impact on exhaust emissions, the impact of high biodiesel blends into diesel fuel on diesel emissions was evaluated. The wide variety of biodiesel blendstock, which included not only some kinds of fatty acid methyl esters(FAME) but also hydrofined biodiesel(HBD) and Fischer-Tropsch diesel fuel(FTD), were selected to evaluate. The main blend level evaluated was 5, 10 and 20% and the higher blend level over 20% was also evaluated in some tests. The main advanced technologies for exhaust aftertreatment systems were diesel particulate filter(DPF), Urea selective catalytic reduction (Urea-SCR) and the combination of DPF and NOx storage reduction catalyst(NSR).
X