Refine Your Search

Topic

Author

Search Results

Viewing 1 to 18 of 18
Journal Article

Noise and Emissions Reduction by Second Injection in Diesel PCCI Combustion with Split Injection

2014-10-13
2014-01-2676
An author's previous studies addressed a combustion system which reduces emissions, noise, and fuel consumption by using PCCI with the split injection of fuel. This concept relies on the premixed combustion of the first injected fuel and accelerated oxidation by the second injected fuel. Although this combustion system requires the optimization of the timing of the second injection, the details of how noise and emissions are reduced have not been elucidated. In this paper, the authors explain the mechanism whereby emissions and noise are reduced by the second injection. In-cylinder visualizations and numerical simulations both showed an increase in smoke and CO as the second injection timing was advanced, as induced by the inhibited oxidation of the rich flame. When the second injection timing is excessively retarded, the amount of soot forming around the near-nozzle increased.
Journal Article

Friction Coefficient Variation Mechanism under Wet Condition in Disk Brake (Variation Mechanism Contributing Wet Wear Debris)

2016-09-18
2016-01-1943
This paper deals with friction under wet condition in the disk brake system of automobiles. In our previous study, the variation of friction coefficient μ was observed under wet condition. And it was experimentally found that μ becomes high when wear debris contains little moisture. Based on the result, in this paper, we propose a hypothesis that agglomerates composed of the wet wear debris induce the μ variation as the agglomerates are jammed in the gaps between the friction surfaces of a brake pad and a disk rotor. For supporting the hypothesis, firstly, we measure the friction property of the wet wear debris, and confirm that the capillary force under the pendular state is a factor contributing to the μ variation. After that, we simulate the wear debris behavior with or without the capillary force using the particle-based simulation. We prepare the simulation model for the friction surfaces which contribute to the friction force through the wear debris.
Journal Article

Concept of “Temperature Swing Heat Insulation” in Combustion Chamber Walls, and Appropriate Thermo-Physical Properties for Heat Insulation Coat

2013-04-08
2013-01-0274
The aim of this work is to investigate the possibility of heat insulation by “Temperature Swing”, that is temperature fluctuation, on combustion chamber walls coated with low-heat-conductivity and low-heat-capacity materials. Adiabatic engines studied in the 1980s, such as ceramic coated engines, caused constantly high temperature on combustion wall surface during the whole cycle including the intake stroke, even if it employed ceramic thermal barrier coating methods. This resulted in increase in NOx and Soot, decrease in volumetric efficiency and combustion efficiency, and facilitated the occurrence of engine knock. On the other hand, “Temperature Swing” coat on the combustion chamber walls leads to a large change in surface temperature. In this case, the surface temperature with this insulation coat follows the transient gas temperature, which decreases heat loss with the prevention of intake air heating, and also which is expected to prevent NOx and Soot from increasing.
Journal Article

Reduction of Heat Loss and Improvement of Thermal Efficiency by Application of “Temperature Swing” Insulation to Direct-Injection Diesel Engines

2016-04-05
2016-01-0661
The reduction of the heat loss from the in-cylinder gas to the combustion chamber wall is one of the key technologies for improving the thermal efficiency of internal combustion engines. This paper describes an experimental verification of the “temperature swing” insulation concept, whereby the surface temperature of the combustion chamber wall follows that of the transient gas. First, we focus on the development of “temperature swing” insulation materials and structures with the thermo-physical properties of low thermal conductivity and low volumetric heat capacity. Heat flux measurements for the developed insulation coating show that a new insulation material formed from silica-reinforced porous anodized aluminum (SiRPA) offers both heat-rejecting properties and reliability in an internal combustion engine. Furthermore, a laser-induced phosphorescence technique was used to verify the temporal changes in the surface temperature of the developed insulation coating.
Journal Article

The Development of Fuel Economy Test Method for Heavy Duty Diesel Engine Oil (The First HD Engine Test Method and the New JASO DH-2F Category)

2017-03-28
2017-01-0884
This paper reviews the development of the first fuel economy engine test method for heavy duty diesel oil, as well as the new JASO DH-2F category introduced in April 2017 [1][2][3], which adds a fuel economy requirement to the JASO DH-2 requirements in the JASO M355:2015 standard. Recently, better fuel economy is required heavy duty diesel vehicles as well as gasoline vehicles. Therefore, advanced technologies have been applied to improve diesel engines, as well as diesel engine oils and additives, and achieve better fuel economy. However, the Automotive Diesel Engine Oil Standard (JASO M355) applied in Japan as a standard for diesel engine oils does not include any fuel economy requirements.
Journal Article

Effect of Fuel-Air Mixture Dilution on Knock Intensity in an SI Engine

2018-04-03
2018-01-0211
Occurrence of knock in spark ignition (SI) engines is usually suppressed by inhibiting auto-ignition of the fuel-air mixture. A steep increase in pressure by auto-ignition of the local mixture is thought to initiate the pressure oscillation, which results in knock. Therefore, in order to prevent knock, the strength of the pressure oscillation would be decreased by reducing the local heat release of the end gas. In this study, the oxidation reaction rate of the auto-ignition was attempted to be reduced by dilution of the mixture. The effect of mixture dilution on the strength of pressure oscillation, that is knock intensity, was examined using a rapid compression machine (RCM) and a single cylinder SI engine. The test result of compression ignition of homogeneous mixture using RCM showed that increase in dilution ratio could decrease the knock intensity even if the input heat increased and the auto-ignition timing advanced.
Journal Article

Pre-Ignition of Gasoline-Air Mixture Triggered by a Lubricant Oil Droplet

2014-10-13
2014-01-2627
This paper presents the effects of a lubricant oil droplet on the start of combustion of a fuel-air mixture. Lubricant oil is thought to be a major source of low-speed pre-ignition in highly boosted spark ignition engines. However, the phenomenon has not yet been fully understood because its unpredictability and the complexity of the mixture in the engine cylinder make analysis difficult. In this study, a single oil droplet in a combustion cylinder was considered as a means of simplifying the phenomenon. The conditions under which a single oil droplet ignites earlier than the fuel-air mixture were investigated. Tests were conducted by using a rapid compression expansion machine. A single oil droplet was introduced into the cylinder through an injector developed for this study. The ignition and the flame propagation were observed through an optical window, using a high-speed video camera.
Technical Paper

Summary report of Japan Clean Air Program diesel and diesel fuel activities

2007-07-23
2007-01-1952
Diesel emissions are significant issue worldwide, and emissions requirements have become so tough that. the application of after-treatment systems is now indispensable in many countries To meet even more stringent future emissions requirements, it has become apparent that the improvement of market fuel quality is essential as well as the development in engine and exhaust after-treatment technology. Japan Clean Air Program II (JCAP II) is being conducted to assess the direction of future technologies through the evaluation of current automobile and fuel technologies and consequently to realize near zero emissions and carbon dioxide (CO2) emission reduction. In this program, effects of fuel properties on the performance of diesel engines and a vehicle equipped with two types of diesel NOx emission after-treatment devices, a Urea-SCR system and a NOx storage reduction (NSR) catalyst system, were examined.
Technical Paper

User/Maker Cooperation in Benefiting an Automated Mechanical Transmission for a City Bus

1990-10-01
902275
Four years have passed since the automated mechanical transmission was first introduced in city buses, and this system is now making steady inroads into the market. The development of this system was a result of the cooperation between Kinki Nippon Railway Co., Ltd., the largest bus and coach transportation company, and Hino Motors Ltd., the largest truck and bus manufacturer in Japan. First an investigation was conducted of the topography and traffic conditions of the bus routes, then trial runs and refinement of the computer control software was carried out using three chosen routes, and finally the actual performance of the system was tested according to the finalized specifications. This paper introduces the development process, provides a background to the city bus service, and describes the benefits brought by this system and the successful results of this cooperation.
Technical Paper

Sensitivity Analysis Method of Scatter Factors Based on Cyclic Plastic Zone Size for Fatigue Life of Arc-Welded Joint

2003-10-27
2003-01-2826
Effects of various scatter factors on fatigue strength for arc-welds were studied by fatigue test results and sensitivity analysis using the method of cyclic plastic zone size (ω*). The followings were clarified. First, effects of flank angle could be decided by the sensitivity calculated based on the relation between fatigue life for finite life and flank angle. Second, effects of material could be explained by the sensitivity for which the difference of fatigue strength coefficient for each material was analysed. The results, it was verified that there was no effect in notch specimens and there was effect in smooth specimens. Third, effect of thickness was defined by function of the ratio of thickness.
Technical Paper

Development of Instantaneous Temperature Measurement Technique for Combustion Chamber Surface and Verification of Temperature Swing Concept

2016-04-05
2016-01-0675
To improve the thermal efficiency of an internal combustion engine, the application of ceramics to heat loss reduction in the cylinders has been studied [1-2]. The approach taken has focused on the low heat conductivity and high heat resistance of the ceramic. However, since the heat capacity of the ceramic is so large, there is a problem in that the wall temperature increases during the combustion cycle. This leads to a decrease in the charging efficiency, as well as knocking in gasoline engines. To overcome these problems, the application of thermal insulation without raising the gas temperature during the intake stroke has been proposed [3-4]. As a means of achieving this, we developed a "temperature swing heat insulation coating" [5, 6, 7, 8, 9]. This reduces the heat flux from the combustion chamber into the cooling water by making the wall temperature follow the gas temperature as much as possible during the expansion and exhaust strokes.
Technical Paper

Analysis of the Deterioration of Nylon-66 Immersed in GTL Diesel Fuel Part 2. Analysis of Model Fuel and Nylon Before and After Immersion

2006-10-16
2006-01-3327
In a previous paper (Part 1 of this series), nylon-66 specimens were immersed in two GTL diesel fuels (GTL-A and GTL-B) and then subjected to tensile testing. The tensile test results revealed that the elongation of the specimen immersed in GTL-A was dramatically reduced. The GTL diesel fuels and nylon specimens before and after immersion were analyzed to determine the cause of the decline in elongation. It was found that the poor elongation was caused by penetration and oxidation of low molecular-weight paraffins and that the ease of penetration and oxidation of paraffin depended on the structure of paraffin. In this paper, the low molecular-weight paraffins detected in GTL-A were mixed to produce model fuels. Then, pieces of nylon cut from the tensile test specimen, were immersed in the model fuels. In addition, partial oxidation products of the paraffin (alcohol, aldehyde or ketone and acid) were used in immersion tests of the nylon pieces.
Technical Paper

Effects of Fuel Properties on the Performance of Advanced Diesel NOx Aftertreatment Devices

2006-10-16
2006-01-3443
In the Japan Clean Air Program II (JCAP II) Diesel WG, effects of fuel properties on the performance of two types of diesel NOx emission aftertreatment devices, a Urea-SCR system and a NOx storage reduction (NSR) catalyst system, were examined. For a Urea-SCR system, the NOx emission reduction performance with and without an oxidation catalyst installed in front of the SCR catalyst at low exhaust gas temperature operation was compared. For an NSR catalyst system, the effect of fuel sulfur on both emissions and fuel economy during 50,000 km driving was examined. Furthermore, effects of other fuel properties such as distillation on exhaust emissions were investigated. The results show that sulfur is the influential factor for both devices. Namely, high NOx emission reduction performance of the Urea-SCR system with the oxidation catalyst at low exhaust gas temperature operation is influenced by sulfur.
Technical Paper

Development of a New Multigrade Engine Oil for Improved Wear Resistance in Heavy Vehicle Diesel Engines—PART I: Diesel Soot and Valve Train Wear

1985-10-01
852134
The goal of the present investigation is to develop suitable high quality SAE10W-30 engine oils for the next generation of heavy duty diesel engines with improved fuel economy, output, emission control performance, etc. To achieve these goals, methods of improving antiwear performance of diesel engine oils were investigated, since upgrading antiwear performance is a critical factor in future developments. The paper, mainly through motoring engine tests, focuses on the effects of diesel soot on valve train wear and the possibility of reducing wear caused by soot. The results demonstrated that diesel soot clearly increased valve train wear and that the wear seemed to vary according to the surface properties of the soot.
Technical Paper

Development of a Hydrogen Powered Medium Duty Truck

1987-11-08
871168
Considerable amount of research work on hydrogen fueled engines has been conducted for 17 years in Musashi Institute of Technology. The primary purpose of the research has been to develop a hydrogen powered autmobile, and in order to realized it, various innovations have been applied and tested. The newest outcome of this 17 years research was Musashi-7 Track, which demonstrated its performance in Innovation vehicle Design Competition held in Vancouver in July 1986. Musashi-7 Track was a modified medium duty truck, which was originally made by Hino Motors, and had a hydrogen powered engine. The track was equipped with 150 ℓ liquid hydrogen (LH2) tank and 8 MPa high pressure LH2 pump. The pump delivered 8 MPa high pressure hydrogen gas to the engine and the fuel was injected to a hot surface igniter in DI combustion chamber. This type of hydrogen enigne has following advantages. Firstly, fuel corrier weight and volume can be much smaller than those of metal-hydrides (MH).
Technical Paper

Development of Free Piston Engine Linear Generator System Part 2 - Investigation of Control System for Generator

2014-04-01
2014-01-1193
Free Piston Engine linear Generator (FPEG) that is thin and compact and has high efficiency and high fuel flexibility has been developed. The developed FPEG consists of a two-stroke combustion chamber, a linear generator, and a gas spring chamber. This paper focuses on the control logic of the linear generator, where the generator can be changed instantly to act as a driving motor, according to demand. Both the position and velocity of the piston are selected as feedback parameters for the control logic. The proposed feedback method realizes stable and robust control behavior with respect to abnormal combustion conditions, such as pre-ignition. In addition, the control logic must satisfy the following requirements. First, in order to achieve stable two-stroke combustion, the position of the piston is precisely controlled, especially near the top dead center (TDC) and the bottom dead center (BDC).
Technical Paper

Model-Based Development Design for a Continuously Variable Discharge Oil Pump Design

2019-04-02
2019-01-0764
Recently, for protection of the environment, the regulation of automobile fuel consumption and exhaust gas emission has been strengthened. In light of such circumstances, automobile parts are generally required to be able to improve fuel efficiency and reduce exhaust gas emission. In order to meet such requirements, the structure of fuel/exhaust-related devices has become complicated. Redesigns of future products that will be increasingly complex will lengthen the development period and reduce cost efficiency seriously.
Technical Paper

Validation of Wireless Power Transfer up to 11kW Based on SAE J2954 with Bench and Vehicle Testing

2019-04-02
2019-01-0868
Wireless Power Transfer (WPT) promises automated and highly efficient charging of electric and plug-in-hybrid vehicles. As commercial development proceeds forward, the technical challenges of efficiency, interoperability, interference and safety are a primary focus for this industry. The SAE Vehicle Wireless Power and Alignment Taskforce published the Recommended Practice J2954 to help harmonize the first phase of high-power WPT technology development. SAE J2954 uses a performance-based approach to standardizing WPT by specifying ground and vehicle assembly coils to be used in a test stand (per Z-class) to validate performance, interoperability and safety. The main goal of this SAE J2954 bench testing campaign was to prove interoperability between WPT systems utilizing different coil magnetic topologies. This type of testing had not been done before on such a scale with real automaker and supplier systems.
X