Refine Your Search

Topic

Author

Search Results

Journal Article

Prediction of Vehicle Interior Noise from a Power Steering Pump using Component CAE and Measured Noise Transfer Functions of the Vehicle

2010-04-12
2010-01-0509
In response to the growing demand for fuel economy, we are developing a high-efficient variable displacement pump for hydraulic power steering systems. In order to develop a quiet variable displacement pump which generates lower noise for better vehicle interior sound quality, we have been developing a simulation tool which includes hydraulic analysis, vibration analysis, and vehicle interior noise analysis which combines simulation outputs and measured noise transfer functions of the targeted vehicle. This paper provides both validation results of the simulation tool and application examples to design improvement to conclude the effectiveness of the simulation tool developed.
Journal Article

Injection Quantity Range Enhancement by Using Current Waveform Control Technique for DI Gasoline Injector

2014-04-01
2014-01-1211
We have achieved injection quantity range enhancement by using the current waveform control technique for direct injection (DI) gasoline injectors. In this study, we developed an injection quantity simulator to find out the mechanism of non-linear characteristics. We clarified the non-linear production mechanism by using the simulator. This simulator is a one-dimensional simulator that incorporates calculation results from both unsteady electromagnetic field analysis and hydraulic flow analysis into the motion equation of this simulation code. We investigated the relation between armature and the injection quantity by using the simulator. As a result, we clarified that the non-linearity was produced by the bounce of the armature in the opening action. Thus, we found that it is effective to reduce the armature bounce to improve the linearity of the injection quantity characteristics.
Technical Paper

Study on Mixture Formation and Ignition Process in Spark Ignition Engine Using Optical Combustion Sensor

1990-09-01
901712
Mixture formation and the ignition process in 4 cycle 4 cylinder spark ignition engines were investigated, using an optical combustion sensor that combines fiber optics with a conventional spark plug. The sensor consists of a 1-mm diameter quartz glass optical fiber cable inserted through the center of a spark plug. The tip of the fiber is machined into a convex shape to provide a 120-degree view of the combustion chamber interior. Light emitted by the spark discharge between spark electrodes and the combustion flames in the cylinder is transmitted by the optical cable to an opto-electric transducer. As a result, the ignition and combustion process which depends on the mixture formation can be easily monitored without installing transparent pistons and cylinders. This sensor can give more accurate information on mixture formation in the cylinders.
Technical Paper

Engine Knock Detection Using Multi-Spectrum Method

1992-02-01
920702
High engine load and over-heated engine cylinder are the main causes of engine knock. When knock occurs in an engine, vibrations composed of several specific resonant frequencies occur. Some of these resonant frequencies are missed stochastically because specific resonant frequencies are caused by different resonant vibration modes in an engine cylinder. However, a conventional knock detector can only measure a fixed resonant frequency using a band-pass filter. This paper presents a multi-spectrum method which greatly improves knock detection accuracy by detecting the knock resonance frequencies from several specific vibration frequencies. Through overcoming the random occurrences of knock resonant frequencies by selecting specific frequencies, knock detection accuracy can be greatly improved. We studied a high precision knock detection method using real-time frequency analysis and a piezoelectric accelerometer on a V-6 engine.
Technical Paper

An Automatic Parameter Matching for Engine Fuel Injection Control

1992-02-01
920239
An automatic matching method for engine control parameters is described which can aid efficient development of new engine control systems. In a spark-ignition engine, fuel is fed to a cylinder in proportion to the air mass induced in the cylinder. Air flow meter characteristics and fuel injector characteristics govern fuel control. The control parameters in the electronic controller should be tuned to the physical characteristics of the air flow meter and the fuel injectors during driving. Conventional development of the engine control system requires a lot of experiments for control parameter matching. The new matching method utilizes the deviation of feedback coefficients for stoichiometric combustion. The feedback coefficient reflects errors in control parameters of the air flow meter and fuel injectors. The relationship between the feedback coefficients and control parameters has been derived to provide a way to tune control parameters to their physical characteristics.
Technical Paper

Development of a Highly Accurate Air-Fuel Ratio Control Method Based on Internal State Estimation

1992-02-01
920290
A fuel injection control method is developed in which the transient air-fuel ratio is accurately controlled by an internal state estimation method with dynamic characteristics. With conventional methods the air-fuel ratio control precision is limited, because the air measurement system, the air and the fuel dynamic characteristics lack precision. In this development, the factors disturbing the air-fuel ratio under transient conditions are determined by analysis of the control mechanisms. The disturbance factors are found to be (1) the hot wire sensor has a delay time, (2) manifold air charging causes an overshoot phenomenon, (3) there is a dead time between sensing and fuel flow into the cylinder and (4) there is a delay of fuel flow into the cylinder caused by the fuel film. Compensation schemes are constructed for each of these technical problems.
Technical Paper

Virtual FMEA and Its Application to Software Verification of Electric Power Steering System

2017-03-28
2017-01-0066
This paper presents the “Virtual Failure Mode and Effects Analysis (vFMEA)” system, which is a high-fidelity electrical-failure-simulation platform, and applies it to the software verification of an electric power steering (EPS) system. The vFMEA system enables engineers to dynamically inject a drift fault into a circuit model of the electronic control unit (ECU) of an EPS system, to analyze system-level failure effects, and to verify software-implemented safety mechanisms, which consequently reduces both cost and time of development. The vFMEA system can verify test cases that cannot be verified using an actual ECU and can improve test coverage as well. It consists of a cycle-accurate microcontroller model with mass-production software implemented in binary format, analog and digital circuit models, mechanical models, and a state-triggered fault-injection mechanism.
Technical Paper

Numerical Study of Internal Combustion Engine using OpenFOAM®

2016-04-05
2016-01-1346
We developed the numerical simulation tool by using OpenFOAM® and in-house simulation codes for Gasoline Direct Injection (GDI) engine in order to carry out the precise investigation of the throughout process from the internal nozzle flow to the fuel/air mixture in engines. For the piston/valve motions, a mapping approach is employed and implemented in this study. In the meantime, the spray atomization including the liquid-columnbreakup region and the secondary-breakup region are simulated by combining the different numerical approaches applied to each region. By connecting the result of liquid-column-breakup simulation to the secondary-breakup simulation, the regions which have different physical phenomena with different length scales are seamlessly jointed; i.e., the velocity and position of droplets predicted by the liquid-column-breakup simulation is used in the secondary breakup simulation so that the initial velocity and position of droplets are transferred.
Technical Paper

Model-Based Technique for Air-Intake-System Control Using Thermo-Fluid Dynamic Simulation of SI Engines and Multiple-Objective Optimization

2011-10-06
2011-28-0119
We have developed a model-based control for the air intake system in a variable valve engine, employing total engine simulation, the response surface method and multi-objective optimization scheme. In our technique, we performed the simulation model tuning and validation, followed by the creation of a dataset for the polynomial regression analysis of the charging efficiency. A D-optimal design, robust least squares method, and likelihood-ratio test were demonstrated to yield a robust and accurate control model. Coupling the total engine simulator with a genetic algorithm, model based calibration for optimal valve timing stored in lookup table was carried out under multiple objectives and restrictions. The reliability of the implementation control model, which considers the effect of gas dynamics in the intake system, was confirmed using a model-in-the-loop simulation.
Technical Paper

Transient Vibration Simulation of Motor Gearbox Assembly Driven by a PWM Inverter

2017-06-05
2017-01-1892
Predicting the vibration of a motor gearbox assembly driven by a PWM inverter in the early stages of development is demanding because the assembly is one of the dominant noise sources of electric vehicles (EVs). In this paper, we propose a simulation model that can predict the transient vibration excited by gear meshing, reaction force from the mount, and electromagnetic forces including the carrier frequency component of the inverter up to 10 kHz. By utilizing the techniques of structural model reduction and state space modeling, the proposed model can predict the vibration of assembly in the operating condition with a system level EV simulator. A verification test was conducted to compare the simulation results with the running test results of the EV.
Technical Paper

A New Diagnosis Method for an Air-Fuel Ratio Cylinder Imbalance

2012-04-16
2012-01-0718
A new diagnosis method for an air-fuel ratio cylinder imbalance has been developed. The developed diagnosis method is composed of two parts. The first part detects an occurrence of an air-fuel ratio cylinder imbalance by using a two revolution frequency component of an EGO sensor output signal or an UEGO sensor output signal upstream from a catalyst. The two revolution frequency component is from a cycle where an engine rotates twice. The second part of the diagnosis method detects an increase of emissions by using a low frequency component which is calculated from the output of an EGO sensor downstream from the catalyst. When the two revolution frequency component calculated using the upstream sensor output is larger than a certain level and the low frequency component calculated using the downstream sensor output is shifted to a leaner range, the diagnosis judges that the emissions increase is due to an air-fuel ratio cylinder imbalance.
Technical Paper

Spray Atomization Study on Multi-Hole Nozzle for Direct Injection Gasoline Engines

2013-04-08
2013-01-1596
We investigated the size of fuel spray droplets from nozzles for direct injection gasoline (DIG) engines. Our findings showed that the droplet size can be predicted by referencing the geometry of the nozzle. In a DIG engine, which is used as part of a system to reduce fuel consumption, the injector nozzle causes the fuel to spray directly into the combustion chamber. It is important that this fuel spray avoid adhesion to the chamber wall, so multi-hole injection nozzles are used to obtain spray shape adaptability. It is also important that spray droplets be finely atomized to achieve fast vaporization. We have developed a method to predict the atomization level of nozzles for fine atomization nozzle design. The multi-hole nozzle used in a typical DIG injector has a thin fuel passage upstream of the orifice hole. This thin passage affects the droplet size, and predicting the droplet size is quite difficult if using only the orifice diameter.
Technical Paper

A Study of Friction Characteristics of Continuously Variable Valve Event & Lift (VEL) System

2006-04-03
2006-01-0222
A continuously variable valve event and lift (VEL) system, actuated by oscillating cams, can provide optimum lift and event angles matching the engine operating conditions, thereby improving fuel economy, exhaust emission performance and power output. The VEL system allows small lift and event angles even in the engine operating region where the required intake air volume is small and the influence of valvetrain friction is substantial, such as during idling. Therefore, the system can reduce friction to lower levels than conventional valvetrains, which works to improve fuel economy. On the other hand, a distinct feature of oscillating cams is that their sliding velocity is zero at the time of peak lift, which differs from the behavior of conventional rotating cams. For that reason, it is assumed that the friction and lubrication characteristics of oscillating cams may differ from those of conventional cams.
Technical Paper

Model-Based Methodology for Air Charge Estimation and Control in Turbocharged Engines

2013-04-08
2013-01-1754
The purpose of this study is to develop model-based methodologies which employ thermo-fluid dynamic engine simulation and multiple-objective optimization schemes for engine control and calibration, and to validate the reliability of the method using a dynamometer test. In our technique, creating a total engine system model begins by first entirely capturing the characteristics of the components affecting the engine system's behavior, then using experimental data to strictly adjust the tuning parameters in physical models. Engine outputs over the full range of engine operation conditions as determined by design of experiment (DOE) are simulated, followed by fitting the provided dataset using a nonlinear response surface model (RSM) to express the causal relationship among engine operational parameters, environmental factors and engine output. The RSM is applied to an L-jetronic® air-intake system control logic for a turbocharged engine.
Technical Paper

Real Time Control for Fuel Injection System with Compensating Cylinder-by-Cylinder Deviation

1990-02-01
900778
We have examined a new precise control method of the air fuel ratio during a transient state which provides improved exhaust characteristics of automobile engines. We investigated the measurement method for the mass of fresh air inducted by the cylinder, which is most important for controlling the air fuel ratio. The mass of fresh air must be measured in real time because it changes in each cycle during a transient state. With an conventional systems, it has been difficult to get accurate measurement of this rapidly changing mass of fresh air. The method we studied measures the mass of fresh air by using the intake manifold pressure and air flow sensors. During a transient state, the reverse flow of the residual gas from the cylinder into the intake manifold, which occurs at the first stage of the suction stroke, changes with each cycle. The mass of fresh air changes accordingly.
Technical Paper

Numerical Simulation System for Analyzing Fuel Film Flow in Gasoline Engine

1993-03-01
930326
A new numerical simulation system has been developed which predicts flow behavior of fuel film formed on intake port and combustion chamber walls of gasoline engines. The system consists of a film flow model employing film thickness as a dependent variable, an air flow model, and a fuel spray model. The system can analyze fuel film flow formed on any arbitrary three-dimensional configuration. Fuel film flow formed under a condition of continuous intermittent fuel injection and steady-state air flow was calculated, and comparison with experimental data showed the system possessing ability of qualitative prediction.
Technical Paper

Mixture Formation During Cold Starting and Warm-up in Spark Ignition Engines

1996-02-01
960065
A thermodynamic analysis of mixture formation in cylinders that takes into account mixture inhomogeneity and the wall film is presented. Conditions for obtaining low hydrocarbon emission are clarified analytically as a function of the fuel mass of the wall film and inhomogeneity of the mixture. Optimum processes for atomizing and vaporizing fuel are presented to reduce the inhomogeneity and the fuel mass of the film.
Technical Paper

A Single-chip RISC Microcontroller Boarding on MY1998

1997-02-24
970863
This paper presents a single-chip 32bit RISC microcontroller boarding on MY1998 dedicated to highly complicated powertrain management. The high performance 32bit RISC CPU provides the only solution to meet requirements of drastic CPU performance enhancement and integration. Furthermore, a 32bit counter, based on a 20 MHz clock, and a 32bit multiplier make possible misfire detection and precise analysis of the engine management strategy, especially cylinder individual air-fuel ratio control.
Technical Paper

Development of High Pressure Fuel Pump by using Hydraulic Simulator

2005-04-11
2005-01-0099
We developed a high-pressure fuel pump for a direct injection gasoline engine and used a hydraulic simulator to design it. A single plunger design is the major trend for high-pressure fuel pumps because of its simple structure and small size. However, the single plunger causes large pressure pulsation and an unstable flow rate, especially at high engine speed. Therefore, a fuel-pipe layout that inhibits the pressure pulsation and a flow-rate control that stabilizes the flow are the most important challenges in pump design. Our newly developed hydraulic simulator can evaluate the dynamic characteristics of a total fuel supply system, which consists of pump, pipe, injector, and control logic. Using this simulator, we have improved fuel flow by optimizing the outlet check valve lift and the cam profile, and we reduced pressure pulsation by optimizing the layout of fuel pipes. Our simulation results agreed well with our experimental results.
Technical Paper

Mixture Formation of Fuel Injection Systems in Gasoline Engines

1988-02-01
880558
Mixture formation technology for gasoline engine multipoint fuel injection systems has been investigated. The fuel injector's spray, the volatility of droplets floating in the air flow, the movement of droplets around the intake valve's upper surface, the volatility of droplets on heated surfaces, and the process of atomizing droplets in the intake valve air flow was analyzed. Droplet diameters and spray patterns for good mixture formation without liquid film in cylinders have been clarified. When sequential injection is used for better responsiveness in fuel injection systems, engine performance may be reduced through increased HC emissions in some conditions. Reducing the diameter of spray droplets and preventing fuel from concentrating in the intake valve promotes vaporization, reduces fuel concentration on cylinder walls, and prevents reductions in engine performance.
X