Refine Your Search

Topic

Author

Search Results

Video

New Particulate Matter Sensor for On Board Diagnosis

2012-02-16
The presentation describes technology developments and the integration of these technologies into new emission control systems. As in other years, the reader will find a wide range of topics from various parts of the world. This is reflective of the worldwide scope and effort to reduce diesel exhaust emissions. Topics include the integration of various diesel particulate matter (PM) and Nitrogen Oxide (NOx) technologies as well as sensors and other emissions related developments. Presenter Atsuo Kondo, NGK Insulators, Ltd.
Journal Article

New Particulate Matter Sensor for On Board Diagnosis

2011-04-12
2011-01-0302
The reduction of greenhouse gas is becoming increasingly important for humankind, and vehicles with low CO₂ emissions have a part to play in any reduction initiatives. Diesel engines emit 30% less CO₂ than gasoline engines, so diesel engines will make an important contribution to the overall decrease. Unfortunately diesel exhaust gas contains particulate matter (PM) which may cause health problems, and such PM emissions are regulated by law. In order to reduce PM, especially soot, diesel particulate filters (DPFs) are widely fitted to diesel vehicles. A DPF can remove more than 99% by weight of soot from exhaust gas under normal operating conditions, and they are one of the most important methods to achieve any regulation targets. But if the system malfunctions, the PM emissions may exceed the regulation limit. To detect such PM leakage, on-board diagnostics (OBD) are required.
Technical Paper

Electric Heating Regeneration of Large Wall-Flow Type DPF

1991-02-01
910136
Ceramic wall-flow type diesel particulate filters (DPF) are being investigated for the aftertreatment systems of heavy duty engines. To use ceramic DPF more reliably and easily, electric heating regenerations are studied varying combustion air flow rates and amounts of accumulated soot. Despite electric heater capacity limitations, it is possible to regenerate DPF at a certain combustion air flow rate without thermal shock failure. The maximum withstood temperature against thermal shock failure of electric heating regeneration is similar to that of diesel burner regeneration on DPF with a nine inch diameter and a twelve inch length.
Journal Article

Development of New High Porosity Diesel Particulate Filter for Integrated SCR Technology/Catalyst

2015-04-14
2015-01-1017
Since the implementation of Euro 6 in September 2014, diesel engines are facing another drastic reduction of NOx emission limits from 180 to only 80 mg/km during NEDC and real driving emissions (RDE) are going to be monitored until limit values are enforced from September 2017. Considering also long term CO2 targets of 95 g/km beyond 2020, diesel engines must become cleaner and more efficient. However, there is a tradeoff between NOx and CO2 and, naturally, engine developers choose lower CO2 because NOx can be reduced by additional devices such as EGR or a catalytic converter. Lower CO2 engine calibration, unfortunately, leads to lower exhaust gas temperatures, which delays the activation of the catalytic converter. In order to overcome both problems, higher NOx engine out emission and lower exhaust gas temperatures, new aftertreatment systems will incorporate close-coupled DeNOx systems.
Technical Paper

Thick Film ZrO2 NOx Sensor for the Measurement of Low NOx Concentration

1998-02-01
980170
A practical ZrO2 NOx sensor using dual oxygen pumping cells has been introduced for the control of NOx emitted from a lean-burn gasoline engine and diesel engine.(1),(2). However, the measuring accuracy was not high enough to be useful for controlling or monitoring a low level of NOx concentration such as several tens ppm behind a three way catalyst or lean NOx catalyst which is NOx adsorption or De-NOx catalyst. This paper describes improvement of the interference effect of oxygen in the exhaust gas from the lean-burn gasoline engine and diesel engine. The cause of oxygen dependency is analyzed/revealed and a method of improvement is introduced. The improved NOx sensor has an approximately · · 2% measuring error in the wide range of oxygen concentration on a model gas system, compared to the · ·10% of the previous one.
Technical Paper

In-line Hydrocarbon Adsorber for Cold Start Emissions - Part II

1998-02-23
980423
The in-line hydrocarbon (HC) adsorber is a passive after-treatment technology to address cold-start hydrocarbons in automotive engine exhaust gas. A major technical challenge of the in-line HC adsorber is the difference between the HC release temperature of the adsorber and the light-off temperature of the burn-off (BO) Catalyst. We call this phenomenon the “reversed-temperature difference”. To reduce the reversed temperature difference, NGK has proposed a new “In-line HC Adsorber System” which consists of light-off (LO) Catalyst + Barrel Zeolite Adsorber (BZA), with a hole through the center, BO Catalyst and secondary air injection management (SAE 970266). This, our latest paper, describes the evaluation of various adsorbents and the effect of the center hole on the Adsorber BZA. The adsorber system, which had the Adsorber BZA with a 25mm ϕ center hole and adsorbent coated, confirmed 30% lower FTP NMHC emission versus a system with no center hole or adsorbent coating.
Technical Paper

Analyses of Thermal Shock Failure on Large Volume DPF

1990-02-01
900113
Ceramic honeycomb wall flow diesel particulate filters (DPF) have been investigated for use in exhaust gas control of diesel vehicles. However, before they can be used, prevention of thermal shock failure during combustion regeneration is necessary. Studies were conducted on thermal shock failures on 9-inch diameter large volume DPF during regeneration by finite element analyses (FEA). These studies reveal that, within safe limits, maximum thermal stress is almost constant even at different gas flow rates and oxygen concentrations. Regeneration tests were also conducted on large volume DPF of several materials having different pore size distributions. FEA thermal stress was compared with mechanical strength of the material at safe levels.
Technical Paper

Filtration Behavior of Diesel Particulate Filters (2)

2007-04-16
2007-01-0923
Due to its better fuel efficiency and low CO2 emissions, the number of diesel engine vehicles is increasing worldwide. Since they have high Particulate Matter (PM) emissions, tighter emission regulations will be enforced in Europe, the US, and Japan over the coming years. The Diesel Particulate Filter (DPF) has made it possible to meet the tighter regulations and Silicon Carbide and Cordierite DPF's have been applied to various vehicles from passenger cars to heavy-duty trucks. However, it has been reported that nano-size PM has a harmful effect on human health. Therefore, it is desirable that PM regulations should be tightened. This paper will describe the influence of the DPF material characteristics on PM filtration efficiency and emissions levels, in addition to pressure drop.
Technical Paper

Filtration Behavior of Diesel Particulate Filters (1)

2007-04-16
2007-01-0921
This paper is Part-1 of two papers discussing the filtration behavior of diesel particulate filters. Results of the fundamental study are presented in Part-1, and test results for real size DPFs are reported in the supplement, Part-2. In this paper, a fundamental experimental study was performed on the effect of pore size and pore size distribution on the PM filtration efficiency of the ceramic, wall-flow Diesel Particulate Filter (DPF). Small round plates of various average mean pore sizes (4.6, 9.4, 11.7, 17.7 micro-meters) with a narrow pore size distribution were manufactured for the tests. During the DPF filtration efficiency tests, ZnCl2 particles in the range of 10 nm to 500 nm were used instead of PM from actual diesel engine exhaust. ZnCl2 particles were made using an infrared furnace and separated into monodisperse particles by DMA (Differential Mobility Analyzer).
Technical Paper

Study on Wall Pore Structure for Next Generation Diesel Particulate Filter

2008-04-14
2008-01-0618
A wall flow diesel particulate filter (DPF) having a novel wall pore structure design for reducing backpressure, increasing robustness, and increasing filtration efficiency is presented. The filter offers a linear relationship between soot loading and backpressure, offering greater accuracy in estimating the amount of soot loading from backpressure. Basic experiments were performed on small plate test pieces having various pore structure designs. Soot generated by a Cast-2F propane burner having a controlled size distribution was used. Cold flow test equipment that was carefully designed for flow distribution and soot/air mixing was used for precise measurement of backpressure during soot loading. The upstream and downstream PM numbers were counted by Scanning Mobility Particle Sizer (SMPS) to determine soot concentration in the gas flow and filtration efficiency of the test pieces. Microscope observations of the soot trapped in the wall were also carried out.
Technical Paper

Study on Next Generation Diesel Particulate Filter

2009-04-20
2009-01-0292
Although diesel engines are superior to gasoline engines in terms of the demand to reduce CO2 emissions, diesel engines suffer from the problem of emitting Particulate Matter (PM). Therefore, a Diesel Particulate Filter (DPF) has to be fitted in the engine exhaust aftertreatment system. From the viewpoint of reducing CO2 emissions, there is a strong demand to reduce the exhaust system pressure drop and for DPF designs that are able to help reduce the pressure drop. A wall flow DPF having a novel wall pore structure design for reducing pressure drop, increasing robustness and increasing filtration efficiency is presented. The filter offers a linear relationship between PM loading and pressure drop, offering lower pressure drop and greater accuracy in estimating the accumulated PM amount from pressure drop. First, basic experiments were performed on small plate test samples having various pore structure designs.
Technical Paper

Study on Euro IV Combustion Technologies for Direct Injection Diesel Engine

2004-03-08
2004-01-0113
It is a generally accepted fact that the advantage of diesel engines over their gasoline-powered counterparts is superior fuel consumption. However, attempts to use diesel engines as car powerplants have been hampered by the associated increase in toxic emissions. Research was carried out with the objectives of achieving the lowest fuel consumption for a diesel-powered passenger vehicle in the 1,590kg equivalent inertia weight class while also meeting the 2005 European diesel exhaust emissions standards (EURO IV). This paper starts with a description of the experiments on combustion and the results of the simulations and experiments using a visualization apparatus, followed by a description of the fuel consumption, emissions and power performance of the engine when fitted in an actual vehicle. To begin with, the relationship between engine displacement and fuel consumption was investigated.
Technical Paper

Soot Regeneration Model for SiC-DPF System Design

2004-03-08
2004-01-0159
The Diesel Particulate Filter (DPF) system has been developed as one of key technologies to comply with tight diesel PM emission regulations. For the DPF control system, it is necessary to maintain temperature inside the DPF below the allowable service temperature, especially during soot regeneration to prevent catalyst deterioration and cracks. Therefore, the evaluation of soot regeneration is one of the key development items for the DPF system. On the other hand, regeneration evaluation requires a lot of time and cost since many different regeneration conditions should be investigated in order to simulate actual driving. The simulation tool to predict soot regeneration behavior is a powerful tool to accelerate the development of DPF design and safe regeneration control strategies. This paper describes the soot regeneration model applied to fuel additive and catalyzed types, and shows good correlation with measured data.
Technical Paper

Large-Scale Electromagnetic Simulation of a Full Automobile Model Using the FDTD Method and Measurement

2004-03-08
2004-01-0777
Parallel computational software employing the FDTD (Finite Difference Time Domain) method was developed and used in a large-scale electromagnetic simulation of a full automobile model. The results demonstrate that this method enables the characteristics of vehicle-installed antennas to be calculated. In addition, a comparison of the results of the simulation and actual measurements verify the viability of the simulation as a design tool.
Technical Paper

Durability Study on Si-SiC Material for DPF(2)

2004-03-08
2004-01-0951
Among the durability items of the DPF (Diesel Particulate Filter), high accumulated soot mass limit is important for the low fuel consumption and also for the robustness. In case of catalyzed DPF, it depends on the following two properties during soot regeneration. One is the lower maximum-temperature inside of the DPF during usual regeneration in order to preserve the catalyst performance. The other is the higher thermal resistance against the unusual regeneration of excess amount of soot. This paper presents the improvement in the soot mass limit of Si bonded SiC DPF. Maximum-temperature inside of the DPF was lowered by the improvement of thermal conductivity of the material, resulted from the controlling of the microstructure. Additionally the thermal resistance was improved by the surface treatment of the Si and SiC.
Technical Paper

Engine Bench and Vehicle Durability Tests of Si bonded SiC Particulate Filters

2004-03-08
2004-01-0952
Modern filter systems allow a significant reduction of diesel particulate emissions. The new silicon bonded silicon carbide particulate filters (Si-SiC filters) play an important role in this application, because they provide flexibility in terms of mean pore size and porosity and also have a high thermal shock capability to meet both engineering targets and emission limits for 2005 and beyond. Particulate filters are exposed to high temperatures and a harsh chemical environment in the exhaust gas of diesel vehicles. This paper will present further durability evaluation results of the new Si bonded SiC particulate filters which have been collected in engine bench tests and vehicle durability runs. The Si-SiC filters passed both 100 and 200 regeneration cycles under severe ageing conditions and without any problems. The used filters were subjected to a variety of analytical tests. The back pressure and ash distribution were determined. The filter material was also analysed.
Technical Paper

Prediction of Catalytic Performance during Light-off Phase with Different Wall Thickness, Cell Density and Cell Shape

2001-03-05
2001-01-0930
Further stringent emission legislation requires advanced technologies, such as sophisticated engine management and advanced catalyst and substrate to achieve high catalytic performance, especially during the light-off phase. This paper presents the results of calculations and measurements of hydrocarbon and carbon monoxide light-off performance for substrates of different wall thickness, cell density and cell shapes. The experimental data from catalyst light-off testing on an engine dynamometer are compared with theoretical results of computer modeling under different temperature ramps and flow rates. The reaction kinetics in the computer modeling are derived from the best fit for the performance of conventional ceramic substrate (6mil/400cpsi), by comparing the theoretical and experimental results on both HC and CO emissions. The calibrated computer model predicts the effects of different wall thickness, cell density and cell shape.
Technical Paper

Development of the NOx Adsorber Catalyst for Use with High-Temperature Condition

2001-03-05
2001-01-1298
NOx adsorber has already been used for the after-treatment system of series production vehicle installed with a lean burn or direct injection engine [1,2,3]. In order to improve NOx adsorbability at high temperatures, many researchers have recently been trying an addition of potassium (K) as well as other conventional NOx adsorbents. Potassium, however, reacts easily with the cordierite honeycomb substrate at high temperatures, and not only causes a loss in NOx adsorbability but also damages the substrate. Three new technologies have been proposed in consideration of the above circumstances. First, a new concept of K-capture is applied in washcoat design, mixed with zeolite, to improve thermal stability of K and to keep high NOx conversion efficiency, under high temperatures, of NOx adsorber catalyst. Second, another new technology, pre-coating silica over the boundary of a substrate and washcoat, is proposed to prevent the reaction between potassium and cordierite.
Technical Paper

Object Oriented Formulation of the 3D Large Deformation Beam Element for Crash Applications

2003-10-27
2003-01-2740
This paper presents a new Object Oriented Formulation of the FE algorithm that encompasses traditional FE, Super Element, experimental data and rigid body mechanics in a single calculation environment. The new formulation is implemented in a software for the dynamic crash simulation of an arbitrary 3D frame structure discretized into Super Elements and subjected to large dynamic crash loading. The paper presents basics of the general algorithm and element formulation. The theoretical portion of this paper is followed by a discussion of benchmark tests and results of the application to real world structures.
Technical Paper

A Study of Oil Film Pressure Distribution on Connecting Rods Big Ends

2002-03-04
2002-01-0296
As a result of demands for friction reduction and other performance requirements, there has been a trend towards reductions of bearing width and increases in load. Thus, high performance predictions are required to determine bearing feasibility limits. Measurement of oil film distribution is essential to judging bearing feasibility. Therefore, a thin film sensor was developed to enable highly accurate oil film pressure measurements in small bearings used in passenger vehicles. The sensor has a particularly smooth surface, making measurement possible with little effect on the lubrication conditions of sliding parts. For this research, the sensor was formed on the shaft so that oil film pressure distribution could be measured around the total periphery of the bearings. Three-dimensional oil film distribution measurements were conducted by the detection of multiple points on the sensor.
X