Refine Your Search

Topic

Search Results

Viewing 1 to 16 of 16
Journal Article

An Improvement of Brake Squeal CAE Model Considering Dynamic Contact Pressure Distribution

2015-09-27
2015-01-2691
In the brake system, unevenly distributed disc-pad contact pressure not only leads to a falling-off in braking feeling due to uneven wear of brake pads, but also a main cause of system instability which leads to squeal noise. For this reason there have been several attempts to measure contact pressure distribution. However, only static pressure distribution has been measured in order to estimate the actual pressure distribution. In this study a new test method is designed to quantitatively measure dynamic contact pressure distribution between disc and pad in vehicle testing. The characteristics of dynamic contact pressure distribution are analyzed for various driving conditions and pad shape. Based on those results, CAE model was updated and found to be better in detecting propensity of brake squeal.
Technical Paper

Correlation of a CAE Hood Deflection Prediction Method

2008-04-14
2008-01-0098
As we continue to create ever-lighter road vehicles, the challenge of balancing weight reduction and structural performance also continues. One of the key parts this occurs on is the hood, where lighter materials (e.g. aluminum) have been used. However, the aerodynamic loads, such as hood lift, are essentially unchanged and are driven by the front fascia and front grille size and styling shape. This paper outlines a combination CFD/FEA prediction method for hood deflection performance at high speeds, by using the surface pressures as boundary conditions for a FEA linear static deflection analysis. Additionally, custom post-processing methods were developed to enhance flow analysis and understanding. This enabled the modification of existing test methods to further improve accuracy to real world conditions. The application of these analytical methods and their correlation with experimental results are discussed in this paper.
Technical Paper

Test Method Development and Understanding of Filter Ring-off-Cracks in a Catalyzed Silicon Carbide (SiC) Diesel Particulate Filter System Design

2008-04-14
2008-01-0765
As the use of diesel engines increases in the transportation industry and emission regulations tighten, the implementation of diesel particulate filter systems has expanded. There are many challenges associated with the design and development of these systems. Some of the key robustness parameters include regeneration, efficiency, fuel penalty, engine performance, and durability. One component of durability in a diesel particulate filter (DPF) system is the filter's ability to resist ring-off-cracking (ROC). ROC is described as a crack caused primarily by thermal gradients, differentials, and the resulting stresses within the DPF that exceed its internal strength. These cracks usually run perpendicular to the substrate flow axis and typically result in the breaking of the substrate into separate halves.
Technical Paper

New Methods of Side Impact Simulation for Better Waveform Reproduction and Door Interaction

2004-03-08
2004-01-0474
As a result of the severity of occupant injuries during a side impact collision, there has been an escalating demand for accurate component level side impact simulation. Three major components for accurate simulation are accurate door velocity, door to seat relative velocity, and door deformation. This paper shows data demonstrating accurate door velocity reproduction, presents test methods to passively and actively control relative seat to door velocity in a non destructive manner, and presents test methods to simulate real time door deformation in a destructive manner. All side impact waveforms include a negative acceleration, high positive accelerations, high jerk, and high frequency content that add to the complexity of this simulation. The simulated door velocity is produced by means of a MTS deceleration brake that only applies a braking force during the deceleration portion of the waveform to maximize acceleration capacity.
Technical Paper

The Studies of Crash Characteristics According to Chassis Frame Types

2001-03-05
2001-01-0119
There are various tests for evaluating how well a vehicle protects people in a crash. The frontal and offset crash test is one of the most important tests that evaluate the crashworthiness of a vehicle. In this paper, we will discuss some parameters that have a major effect on the amount and pattern of intrusion into the occupant compartment during the frontal and offset crash test. And the characteristics of impact are described according to the types of chassis frame, T-type frame and #-type frame. The T-frame has worse performance than #-frame in crash, So it is necessary to make stronger dash compartments in T-frame. We will design a vehicle which has optimized body, chassis structure and material selections by controlling major parameters of frontal crash performance.
Technical Paper

Excitation Control for Consistent Modal Parameters When Testing Nonlinear Structures

2003-05-05
2003-01-1629
Many structures of practical interest exhibit a significant degree of nonlinearity. In such cases, the modal frequencies, damping, and amplitudes will change depending upon the excitation force level, response level and spectrum shape. When reporting the measured modal parameters from an artificial excitation test, the excitation conditions and response levels should be specified, and different modal models may be needed to represent the structural dynamics at different response amplitude levels. If the frequency responses are measured by moving accelerometers in multiple test runs, then it is important to maintain a consistent response level for all test runs. This paper describes a method to eliminate the variability of the response level between data sets by means of closed-loop control of the RMS level. The amplitude control program uses a nonlinear gain estimation technique to set the gain on a “proportional-integral” controller.
Technical Paper

Tools for Integration of Analysis and Testing

2003-05-05
2003-01-1606
The automotive vehicle design process has relied for many years on both analytical studies and physical testing. Testing remains to be required due to the inherent complexities of structures and systems and the simplifications made in analytical studies. Simulation test methods, i.e. tests that load components with forces derived from actual operating conditions, have become the accepted standard. Advanced simulation tools like iterative deconvolution methods have been developed to address this need. Analytical techniques, such as multi body simulation have advanced to the degree that it is practical to investigate the dynamic behavior of components and even full vehicles under the influence of operational loads. However, the approach of testing and analysis are quite unique and no seamless bridge between the two exists. This paper demonstrates an integrated approach to combine testing and analysis together in the form of virtual testing.
Technical Paper

An Examination of the Effect of Seat Free-Play on Modal Analysis Results

2003-05-05
2003-01-1598
With the amount of adjustability present in today's automotive seat, it is a given that some form of looseness and free-play will exist in the structure. The automotive seat community is commonly faced with free-play issues; this is a significant issue where modal analysis is concerned. Free-play creates a non-linear situation, causing a violation of the linear mathematics that modal analysis is based on. Obviously, this situation is not the ideal circumstances under which to perform modal testing and analysis, but 99.9% of the time, the receipt of better samples (reduced free-play) is not a likely option, and the test must still go on. Ideally, you would want to test this structure using random excitation with a shaker to minimize the nonlinearities and provide a repeatable input force.
Technical Paper

A Study of the Auxiliary Belt Drive System for Actual Fuel Saving

2017-03-28
2017-01-0898
The engine indicated torque is not delivered entirely to the wheels, because it is lowered by losses, such as the pumping, mechanical friction and front auxiliary power consumption. The front auxiliary belt drive system is a big power consumer-fueling and operating the various accessory devices, such as air conditioning compressor, electric alternator, and power steering pump. The standard fuel economy test does not consider the auxiliary driving torque when it is activated during the actual driving condition and it is considered a five-cycle correction factor only. Therefore, research on improving the front end auxiliary drive (FEAD) system is still relevant in the immediate future, particularly regarding the air conditioning compressor and the electric alternator. An exertion to minimize the auxiliary loss is much smaller than the sustained effort required to reduce engine friction loss.
Technical Paper

Test Method for Operational Deflection Shape Analysis of Squealing Brake Disc in Dynamic Condition

2012-09-17
2012-01-1807
In order to reduce brake squeal noise, it is important to identify operational deflection shape (ODS) of brake disc while squeal arises. However, in the conventional modal analysis and optical measurement, it is only able to identify limited ODS because of the technical limits. This paper details the test method to identify ODS in radial and tangential as well as axial direction of a brake disc in driving condition. Vibrational signal of a rotating disc was obtained by triaxial accelerometer installed to solid type discs/cooling fins of ventilated type discs, then ODS of disc were analyzed through digital signal processing.
Technical Paper

Prediction and Optimization of Blocked Force Changes of a Suspension System Using Bush Stiffness Injection Method

2022-06-15
2022-01-0956
Automotive OEMs have introduced a new development paradigm, modular architecture development, to improve diversity quality and production efficiency. It needs solid fundamentals of system-based performance evaluation and development for each system level and single component level. When it comes to NVH development, it is challenging to realize the modular concept because noise and vibration should be transferred through various transfer path consisting of many parts and systems, which interact with each other. It is challenging for a single system of interest to be evaluated independently of the adjacent parts and environments. In this study, a new system-based development process for a vehicle suspension was investigated by applying blocked force theory and FRF-based dynamic substructuring. The objective is to determine the better dynamic stiffness distribution of many bushes installed in a suspension system in the frequency range corresponding to road noise.
Technical Paper

Tuning of Suspension Parameters to Improve Dynamic Performance of Passenger Car

1987-11-08
871179
The purpose of this paper is an attempt to make a good compromise between ride and handling without deteriorating each other. Compromise between ride and handling has been a problem for suspension designer. Attempts are made by varing suspension parameters. Effects of each combination has been tested with basic ride and handling test methods. For ride to maintain a constant natural frequency through all load range was a primary target. And for handling to get adequate roll angle at 0.5g lateral acceleration was a target. In conclusion, combination of polyurethane suspension bump and normal rear spring was proved to be able to provide the best compromise, low cost, light weight and better performance. This also showed polyurethane bumper could carry out spring aids successfully.
Technical Paper

Improvement of Tire Development Process Through Study of Tire Test Procedure and Vehicle Correlation

2018-04-03
2018-01-1337
The tire is the vital element in vehicle dynamics, as its contact patch transmits all forces and moments to the ground (accelerating, braking, cornering, rolling).Over the recent decades tire development for passenger cars has been continuously improved and optimized in order to achieve a good overall vehicle performance in R&H that is in balance with all other tire performances (Wear, Durability, NVH, RR, Miles). This general development process has to be suitable for various vehicle types from regular passenger cars over eco-friendly hybrid or electric vehicles to high performance sport cars. The balance between Ride and Handling performance is further adjusted to local customer preferences that are usually distinguished by markets (US, EU, Asia). The tire development process, which is embedded in the overall vehicle development, is usually realized in a mutual collaboration between OEM and tire supplier.
Journal Article

Ductile Fracture Prediction of Automotive Suspension Components

2017-03-28
2017-01-0318
Characterization of the plastic and ductile fracture behavior of a ferrous casting commonly used for the steering knuckle of an automotive suspension system is presented in this work. Ductile fracture testing for various coupon geometries was conducted to simulate a wide range of stress states. Failure data for the higher stress triaxiality were obtained from tension tests conducted on thin flat specimens, wide flat specimens and axisymmetric specimens with varying notch radii. The data for the lower triaxiality were generated from thin-walled tube specimens subjected to torsional loading and compression tests on cylindrical specimens. The failure envelopes for the material were developed utilizing the test data and finite element (FE) simulations of the corresponding test specimens. Experiments provided the load-displacement response and the location of fracture initiation.
Technical Paper

CAATS - Automotive Wind Tunnel Test Techniques

2024-04-09
2024-01-2543
This paper contributes to the Committee on Commonized Aerodynamics Automotive Testing Standards (CAATS) initiative, established by the late Gary Elfstrom. It is collaboratively compiled by automotive wind tunnel users and operators within the Subsonic Aerodynamic Testing Association (SATA). Its specific focus lies in automotive wind tunnel test techniques, encompassing both those relevant to passenger car and race car development. It is part of the comprehensive CAATS series, which addresses not only test techniques but also wind tunnel calibration, uncertainty analysis, and wind tunnel correction methods. The core objective of this paper is to furnish comprehensive guidelines for wind tunnel testing and associated techniques. It begins by elucidating the initial wind tunnel setup and vehicle arrangement within it.
Technical Paper

Adaptive Inverse Control of Vibration Exciter for Tracking Target Acceleration of a Car Subsystem

2024-06-12
2024-01-2920
This research aims to develop an inverse control method capable of adaptively simulating dynamic models of car subsystems in the rig-test condition. Accurate simulation of the actual vibration conditions is one of the most crucial factors in realizing reliable rig-test platforms. However, most typical rig tests are conducted under simple random or harmonic sweep conditions. Moreover, the conventional test methods are hard to directly adapt to the actual vibration conditions when switching the dynamic characteristics of the subsystem in the rig test. In the present work, we developed an inverse controller to adaptively control the vibration exciter referring to the target vibration signal. An adaptive LMS filter, employed for the control algorithm, updated the filter weights in real time by referring to the target and the measured acceleration signals.
X