Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Lab Evaluation and Comparison of Corrosion Performance of Mg Alloys

2010-04-12
2010-01-0728
More Mg alloys are being considered for uses in the automotive industry. Since the corrosion performance of Mg alloy components in practical service environments is unknown, long term corrosion testing at automotive proving grounds will be an essential step before Mg alloy components can be implemented in vehicles. However, testing so many Mg alloy candidates for various parts is labor intensive for the corrosion engineers at the proving grounds. This report presents preliminary results in evaluating corrosion performance of Mg alloys based on rapid corrosion and electrochemical tests in the lab. In this study, four Mg alloy candidates for transmission cases and oil pans: AE44, AXJ530, MRI153M and MRI230D were tested in the lab and at General Motors Corporation Milford Proving Ground and their corrosion results were compared.
Journal Article

Mapping of Global Road Systems Based on Statistical Discriminant Analysis

2010-04-12
2010-01-0924
Automotive manufacturers are facing continuously changing Global environment. Traditionally, these manufacturers relied on structural and general durability tests to validate vehicles. For these tests to remain representative of customer usage in a Global environment, the overall surface conditions of the Global road systems must be studied. Understanding and classifying these road systems conditions is an important step in dealing with vehicle durability in the Global environment. In this paper, an approach to mapping the world road systems into Established Roads (ER) and Developing Roads (DR), utilizing Statistical Discriminant Analysis (SDA), is presented. The classification of Global regions as DR and ER road systems can be effectively used to recommend appropriate development and validation tests for each road system. A few examples are presented to demonstrate how the ER vs.
Journal Article

Electrical Architecture Optimization and Selection - Cost Minimization via Wire Routing and Wire Sizing

2014-04-01
2014-01-0320
In this paper, we propose algorithms for cost minimization of physical wires that are used to connect electronic devices in the vehicle. The wiring cost is one of the most important drivers of electrical architecture selection. Our algorithms perform wire routing from a source device to a destination device through harnesses, by selecting the optimized wire size. In addition, we provide optimized splice allocation with limited constraints. Based on the algorithms, we develop a tool which is integrated into an off-the-shelf optimization and workflow system-level design tool. The algorithms and the tool provide an efficient, flexible, scalable, and maintainable approach for cost analysis and architecture selection.
Journal Article

Advancement in Vehicle Development Using the Auto Transfer Path Analysis

2014-04-01
2014-01-0379
This paper presents the most recent advancement in the vehicle development process using the one-step or auto Transfer Path Analysis (TPA) in conjunction with the superelement, component mode synthesis, and automated multi-level substructuring techniques. The goal is to identify the possible ways of energy transfer from the various sources of excitation through numerous interfaces to given target locations. The full vehicle model, consists of superelements, has been validated with the detailed system model for all loadcases. The forces/loads can be from rotating components, powertrain, transfer case, chain drives, pumps, prop-shaft, differential, tire-wheel unbalance, road input, etc., and the receiver can be at driver/passenger ears, steering column/wheel, seats, etc. The traditional TPA involves two solver runs, and can be fairly complex to setup in order to ensure that the results from the two runs are consistent with subcases properly labeled as input to the TPA utility.
Journal Article

General Motors Rear Wheel Drive Eight Speed Automatic Transmission

2014-04-01
2014-01-1721
General Motors shall introduce a new rear wheel drive eight speed automatic transmission, known as the 8L90, in the 2015 Chevrolet Corvette. The rated turbine torque capacity is 1000 Nm. This transmission replaces the venerable 6L80 six speed automatic. The objectives behind creation of this transmission are improved fuel economy, performance, and NVH. Packaging in the existing vehicle architecture and high mileage dependability are the givens. The architecture is required to offer low cost for a rear drive eight speed transmission while meeting the givens and objectives. An eight speed powerflow, invented by General Motors, was selected. This powerflow yields a 7.0 overall ratio spread, enabling improved launch capability because of a deeper first gear ratio and better fuel economy due to lower top gear N/V capability, relative to the 6L80. The eight speed ratios are generated using four simple planetary gearsets, two brake clutches, and three rotating clutches.
Journal Article

A Two Degree of Freedom, Lumped Inertia Model for Automatic Transmission Clutch-to-Clutch Shift Dynamics

2014-04-01
2014-01-1782
This paper presents a methodology to represent automatic transmission clutch-to-clutch shift dynamics with a two degree of freedom, lumped inertia model. The method of reducing the automatic transmission to a lumped, two inertia model as a function of shift and input shaft acceleration is detailed using a full kinematic representation of the automatic transmission. For a given clutch-to-clutch shift maneuver there are two dependent equations that utilize the two lumped inertias and represent the response of the transmission system from input to output shaft. Applicability of the method is shown for planetary automatic and layshaft dual clutch transmissions. Typical clutch-to-clutch shift maneuvers are illustrated with the two inertia model for power on upshifts and downshifts.
Journal Article

Analytical Study of a Dog Clutch in Automatic Transmission Application

2014-04-01
2014-01-1775
A dog clutch, if successfully implemented in an automatic transmission, provides better packaging and the potential for improved fuel economy. The technical requirements for this concept are examined through modeling and simulation. As a first step, a physics-based component level model is developed that provides an understanding of the basic contact and impact dynamics. The model is compared to a built-in AMESim block to establish confidence. This component level model is then integrated into a powertrain system model within the AMESim environment. As a test bed, the powertrain model is exercised to simulate a friction plate to dog clutch shift in a 6-speed automatic transmission. The analysis helps to define the slip speed target at the onset of the dog clutch engagement while ensuring shift requirements are met. Finally, the model is validated by comparing the simulated results with measured dynamometer data.
Journal Article

A DFSS Approach to Determine Automatic Transmission Gearing Content for Powertrain-Vehicle System Integration

2014-04-01
2014-01-1774
This investigation utilizes a DFSS analysis approach to determine automatic transmission gear content required to minimize fuel consumption for various powertrain - vehicle systems. L18 and L27 inner arrays with automatic transmission design and shift pattern constraint parameters were varied to determine their relative influence on fuel consumption. An outer noise array consisting of two vehicles with various engines, final drive ratios and legislated emissions test cycles was used to make a robust transmission selection based on minimizing fuel consumption. The full details of the DFSS analysis method and assumptions are presented along with a detailed examination of the results. With respect to transmission design parameters, parasitic spinloss and gear mesh efficiency were found to be most important followed by the number of gears. The DFSS analysis further revealed that unique transmission design formulations are potentially required for widely varying engines.
Journal Article

Design Optimization, Development and Manufacturing of General Motors New Battery Electric Vehicle Drive Unit (1ET35)

2014-04-01
2014-01-1806
The General Motors (GM) 1ET35 drive unit is designed for an optimum combination of efficiency, performance, reliability, and cost as part of the propulsion system for the 2014 Chevrolet Spark Electric Vehicle (EV) [1]. The 1ET35 drive unit is a coaxial transaxle arrangement which includes a permanent-magnet (PM) electric motor and a low loss single-planetary transmission and is the sole source of propulsion for the battery-only electric vehicle (BEV) Spark. The 1ET35 is designed with experience gained from the first modern production BEV, the 1996 GM EV1. This paper describes the design optimization and development of the 1ET35 and its electric motor that will be made in the United States by GM. The high torque density electric motor design is based on high-energy permanent magnets that were originally developed by GM in connection with the EV1 and GM bar-wound stator technology introduced in the 2Mode Hybrid electric transmission, used in the Chevrolet Volt and in GM eAssist systems.
Journal Article

Comparing Laser Welding Technologies with Friction Stir Welding for Production of Aluminum Tailor-Welded Blanks

2014-04-01
2014-01-0791
A comparison of welding techniques was performed to determine the most effective method for producing aluminum tailor-welded blanks for high volume automotive applications. Aluminum sheet was joined with an emphasis on post weld formability, surface quality and weld speed. Comparative results from several laser based welding techniques along with friction stir welding are presented. The results of this study demonstrate a quantitative comparison of weld methodologies in preparing tailor-welded aluminum stampings for high volume production in the automotive industry. Evaluation of nearly a dozen welding variations ultimately led to down selecting a single process based on post-weld quality and performance.
Journal Article

Optical Investigation of Dual-fuel CNG/Diesel Combustion Strategies to Reduce CO2 Emissions

2014-04-01
2014-01-1313
Dual-fuel combustion strategies combining a premixed charge of natural gas and a pilot injection of diesel fuel offer the potential to reduce CO2 emissions as a result of the high Hydrogen/Carbon (H/C) ratio of methane gas. Moreover, the high octane number of methane means that dual-fuel combustion strategies can be employed on compression ignition engines without the need to vary the engine compression ratio, thereby significantly reducing the cost of engine hardware modifications. The aim of this investigation is to explore the fundamental combustion phenomena occurring when methane is ignited with a pilot injection of diesel fuel. Experiments were performed on a single-cylinder optical research engine which is typical of modern, light-duty diesel engines. A high-speed digital camera recorded time-resolved combustion luminosity and an intensified CCD camera was used for single-cycle OH*chemiluminescence imaging.
Journal Article

Lightweight Acoustic System Performance Target Setting Process

2013-05-13
2013-01-1982
In the vehicle development process, one important step is to set a component performance target from the vehicle level performance. Conventional barrier-decoupler dash mats and floor trim underlayment systems typically provide sound transmission loss (STL) with minimal absorption. Thus the performance of such components can be relatively easily specified as either STL or Insertion Loss. Lightweight dissipative or multi-layered acoustic materials provide both STL and significant absorption. The net performance is a combination of two parameters instead of one. The target for such components needs to account for this combined effect, however different suppliers use unique formulations and manufacturing methods, so it is difficult and time consuming to judge one formulation against another. In this paper, a unique process is presented to set a component target as a combined effect of STL and absorption.
Journal Article

Characterization of a Set of ECN Spray A Injectors: Nozzle to Nozzle Variations and Effect on Spray Characteristics

2013-09-08
2013-24-0037
The Engine Combustion Network (ECN) is becoming a leading group concerning the experimental and computational analysis of Engine combustion. In order to establish a coherent database for model validation, all the institutions participating to the experimental effort carry out experiments at well-defined standard conditions (in particular at Spray A conditions: 22.8kg/m3, 900K, 0% and 15% O2) and with Diesel injectors having the same specifications. Due to the rising number of ECN participants and also to unavoidable damages, additional injectors are required. This raises the question of injector's characteristics reproducibility and of the appropriate method to introduce such new injectors in the ECN network. In order to investigate this issue, a set of 8 new injectors with identical nominal Spray A specification were purchased and 4 of them were characterized using ECN standard diagnostics.
Journal Article

An Algorithm for Identification of Locally Optimal Basins in Large Dimensions on a Multi-Model Response Surface

2015-04-14
2015-01-0480
Response Surface Models are often used as a surrogate for expensive black-box functions during optimization to reduce computational cost. Often, the CAE analysis models are highly nonlinear and multi-modal. A response surface approximation of such analysis as a result is highly multi-modal; i.e. it contains multiple local optima. A gradient-based optimizer working with such a response surface will often converge to the nearest local optimum. There does not exist any method to guarantee a global optima for non-convex multi-modal functions. For such problems, we propose an efficient algorithm to find as many distinct local optima as possible. The proposed method is specifically designed to work in large dimensions (about 100 ∼ 1000 design variables and similar number of constraints) and can identify most of the locally optimal solutions in a reasonable amount of time.
Journal Article

Simulation Fidelity Improvement of H350 Lower Tibia Indices

2015-04-14
2015-01-0578
Finite element dummy models have been more and more widely applied in virtual development of occupant protection systems across the automotive industry due to their predictive capabilities. H350 dyna dummy model [1] is a finite element representation of the Hybrid III male dummy [2], which is designed to represent the average of the United States adult male population. Lower extremity injuries continue to occur in front crash accidents despite increasing improvement of vehicle crashworthiness and occupant restraint system. It is therefore desirable to predict lower tibia injury numbers in front occupant simulations. Though lower tibia loading/index predictions are not studied as much as the FMVSS 208 regulated injury numbers, the tibia indices are injury criteria that need to be assessed during IIHS and Euro NCAP frontal offset occupant simulations. However during front crash simulations, it is very difficult to achieve good correlations or predictions of lower tibia loadings.
Journal Article

A Study of Mass Drivers in the Brake System

2014-09-28
2014-01-2506
It is obvious at this point even to the most casual observer of the automotive industry that efforts to reduce mass throughout the vehicle are at a fervor. The industry is facing its most significant increase in fuel economy standards in its history, and light-weighting the vehicle is a major enabler. Despite the performance and quality of the brake system being intensely related to its mass, it too has not been spared scrutiny. However, like many modern automotive subsystems, it is very complex and mass reduction opportunities that do not sacrifice performance or quality are not always obvious. There are some interesting and sometimes even profound relationships between mass and other vehicle attributes built into brake system design, and making these more visible can enable a better balancing of brake system with the rest of the vehicle design objectives. Examples include - what is the cost, in terms of brake system mass, of added engine power? Of tire and wheel size?
Journal Article

Stabilization of Highly Diluted Gasoline Direct Injection Engine using Innovative Ignition Systems

2014-10-13
2014-01-2598
Dilution is a promising way to improve fuel economy of Spark-Ignited (SI) gasoline engines. In this context, influence of innovative ignition systems on the dilution acceptance of a 400cc optical GDI engine has been studied. Several systems were tested and compared to a conventional coil: a dual-coil system and two nanosecond scaled plasma generators. Two operating points were studied: 2.8bar IMEP (net) at 2000rpm and 9bar IMEP (net) at 1200rpm. Two diluents were evaluated: real EGR and air (lean combustion). High-speed imaging at frequency up to 10kHz was performed to visualize both spark and combustion initiation and propagation. Voltage and current were measured to infer the energy deposited in the spark plug gap. The dual-coil DCO™ system and the nanosecond multi-pulse plasma generator at their maximum power showed an ability to extend the dilution range of the engine.
Journal Article

On the Effects of EGR on Spark-Ignited Gasoline Combustion at High Load

2014-10-13
2014-01-2628
EGR dilution is a promising way to improve fuel economy of Spark-Ignited (SI) gasoline engines. In particular, at high load, it is very efficient in mitigating knock at low speed and to decrease exhaust temperature at high speed so that fuel enrichment can be avoided. The objective of this paper is to better understand the governing mechanisms implied in EGR-diluted SI combustion at high load. For this purpose, measurements were performed on a modern, single-cylinder GDI engine (high tumble value, multi-hole injector, central position). In addition 0-D and 1-D Chemkin simulations (reactors and flames) were used to complete the engine tests so as to gain a better understanding of the physical mechanisms. EGR benefits were confirmed and characterized at 19 bar IMEP: net ISFC could be reduced by 17% at 1200rpm and by 6% at 5000rpm. At low speed, knock mitigation was the main effect, improving the cycle efficiency by a better combustion phasing.
Journal Article

A Comparative Low Speed Pre-Ignition (LSPI) Study in Downsized SI Gasoline and CI Diesel-Methane Dual Fuel Engines

2014-10-13
2014-01-2688
Low speed pre-ignition (LSPI) in downsized spark-ignition engines has been studied for more than a decade but no definitive explanation has been found regarding the exact sources of auto-ignition. No single mechanism can explain all the occurrences of LSPI and that each engine should be considered as a particular case supporting different conditions for auto-ignition. In a different context, dual fuel Diesel-Methane engines have been more recently studied in large to medium bore compression ignition engines. However, if Dual Fuel combustion is less knock sensitive, LSPI remains one of the main limitations of low-end torque also for dual fuel engines. Indeed, in some cases, premature ignition of CNG can be observed before the Diesel pilot injection as LSPI can classically be observed before the spark in gasoline engines. This article aims at highlighting the similarities and discrepancies between LSPI phenomena in SI gasoline and dual fuel engines.
Technical Paper

Impacts of Ethanol Level and Aromatic Hydrocarbon Structure in the Fuel on the Particle Emissions from a Gasoline Direct Injection Vehicle

2020-09-15
2020-01-2194
The recent particle number limits for a spark ignition engine combined with the real driving emissions (RDE) compliance have motivated the need for a better understanding of the effect of the gasoline fuel composition on the particle emissions. More particularly, the fundamental role of high boiling point components and heavy aromatics on particle emissions was highlighted in several literature works. In addition, works driven by the European Renewable Energy Directive are underway in order to explore the feasibility of an increased amount of sustainable Biofuels in Gasoline. Already widely distributed, ethanol is a clear candidate to such an increase. In this context, the present work aims to understand the effect of ethanol addition and aromatics composition on particulate emissions. Vehicle tests were performed over the Worldwide Harmonized Light Vehicles Test Cycle (WLTC) using a Euro 6c model without a Gasoline Particulate Filter (GPF) and a Euro 6d-Temp one equipped with a GPF.
X