Refine Your Search

Topic

Search Results

Viewing 1 to 19 of 19
Journal Article

Potential of Several Alternative Propulsion Systems for Light Rotorcrafts Applications

2013-09-17
2013-01-2230
Reducing greenhouse gas emissions to limit global warming is becoming one of the key issues of the 21st century. As a growing contributor to this phenomenon, the aeronautic transport sector has recently taken drastic measures to limit its impact on CO2 and pollutants, like the aviation industry entry in the European carbon market or the ACARE objectives. However the defined targets require major improvements in existing propulsion systems, especially on the gas generator itself. Regarding small power engines for business aviation, rotorcrafts or APU, the turboshaft is today a dominant technology, despite quite high specific fuel consumption. In this context, solutions based on Diesel Internal Combustion Engines (ICE), well known for their low specific fuel consumption, could be a relevant alternative way to meet the requirements of future legislations for low and medium power applications (under 1000kW).
Journal Article

Tomorrows Diesel Fuel Diversity - Challenges and Solutions

2008-06-23
2008-01-1731
Regulated emissions, CO2-values, comfort, good driveability, high reliability and costs, this is the main frame for all future powertrain developments. In this frame, the diesel powertrain, not only for passenger cars, but also for commercial vehicle applications, faces some challenges in order to fulfil the future European and current US emission legislations while keeping the fuel consumption benefit, good driveability and an acceptable cost frame. One of these challenges is the varying fuel qualities of diesel fuel in different countries including different cetane number, volatility, sulphur content and different molecular composition. In addition to that in the future, more and more alternative fuels with various fuel qualities and properties will be launched into the market for economical and environmental reasons. At present, the control algorithms of the injection system applied in most diesel engines is open loop control.
Journal Article

Analytical Approach to Model a Saturated Interior Permanent Magnet Synchronous Motor for a Hybrid Electric Vehicle

2011-04-12
2011-01-0347
This paper presents an analytical approach to model an interior permanent magnet motor for a hybrid electric vehicle. Therefore, an analytical model for the calculation of parameters of an interior permanent magnet motor is presented. Furthermore, these parameter values are compared with good agreement to those from finite-element analysis and experimental data. An analytical model to simulate the behaviour of the motor and its control are developed and validated by comparison with experimental data. The thermal analysis of the motor prototype is also done. At the end, the presented model is embedded in the hybrid vehicle simulator and improvements are proposed, such as an analytical approach based on the finite element results to include the core saturation effect.
Journal Article

Study of Soot Formation and Oxidation in the Engine Combustion Network (ECN), Spray A: Effects of Ambient Temperature and Oxygen Concentration

2013-04-08
2013-01-0901
Within the Engine Combustion Network (ECN) spray combustion research frame, simultaneous line-of-sight laser extinction measurements and laser-induced incandescence (LII) imaging were performed to derive the soot volume fraction (fv). Experiments are conducted at engine-relevant high-temperature and high-pressure conditions in a constant-volume pre-combustion type vessel. The target condition, called "Spray A," uses well-defined ambient (900 K, 60 bar, 22.8 kg/m₃, 15% oxygen) and injector conditions (common rail, 1500 bar, KS1.5/86 nozzle, 0.090 mm orifice diameter, n-dodecane, 363 K). Extinction measurements are used to calibrate LII images for quantitative soot distribution measurements at cross sections intersecting the spray axis. LII images are taken after the start of injection where quasi-stationary combustion is already established.
Journal Article

Comparison of PFI and DI Operation in a Downsized Gasoline Engine

2013-04-08
2013-01-1103
A 300 cc gasoline engine has been experimentally and numerically studied to compare PFI and DI operation on naturally-aspirated and turbocharged full load operating points. Experiment outlines the benefits from DI operation in terms of volumetric efficiency, fuel economy and knock propensity but also clearly indicates worse raw engine-out CO emissions. The latter is an indication of the survival of a large scale mixture heterogeneity in this downsized GDI engine even when early injection and intense induced fluid motion are combined. For such a full load operation, the application of optical diagnostics to study mixture heterogeneity cannot be considered because pressure and temperature exceed sustainable levels for transparent materials. Therefore, 3D CFD RANS computations of the intake, injection, combustion and pollutant formation processes including detailed chemistry information are performed to complement the experimental data.
Technical Paper

Optimized Layout of Gasoline Engines for Hybrid Powertrains

2008-01-09
2008-28-0024
Due to the complex powertrain layout in hybrid vehicles, different configurations concerning internal combustion engine, electric motor and transmission can be combined - as is demonstrated by currently produced hybrid vehicles ([1], [2]). At the Institute for Combustion Engines (VKA) at RWTH Aachen University a combination of simulation, Design of Experiments (DoE) and numerical optimization methods was used to optimize the combustion engine, the powertrain configuration and the operation strategy in hybrid powertrains. A parametric description allows a variation of the main hybrid parameters. Parallel as well as power-split hybrid powertrain configurations were optimized with regard to minimum fuel consumption in the New European Driving Cycle (NEDC). Besides the definition of the optimum configuration for engine, powertrain and operation strategy this approach offers the possibility to predict the fuel consumption for any modifications of the hybrid powertrains.
Technical Paper

Evaluation of Modeling Approaches for NOx Formation in a Common-Rail DI Diesel Engine within the Framework of Representative Interactive Flamelets (RIF)

2008-04-14
2008-01-0971
Representative Interactive Flamelets (RIF) have proven successful in predicting Diesel engine combustion. The RIF concept is based on the assumption that chemistry is fast compared to the smallest turbulent time scales, associated with the turnover time of a Kolmogorov eddy. The assumption of fast chemistry may become questionable with respect to the prediction of pollutant formation; the formation of NOx, for example, is a rather slow process. For this reason, three different approaches to account for NOx emissions within the flamelet approach are presented and discussed in this study. This includes taking the pollutant mass fractions directly from the flamelet equations, a technique based on a three-dimensional transport equation as well as the extended Zeldovich mechanism. Combustion and pollutant emissions in a Common-Rail DI Diesel engine are numerically investigated using the RIF concept. Special emphasis is put on NOx emissions.
Technical Paper

Prediction of Combustion Delay and -Duration of Homogeneous Charge Gasoline Engines based on In-Cylinder Flow Simulation

2009-06-15
2009-01-1796
In this paper a new approach is presented to evaluate the combustion behaviour of homogeneous gasoline engines by predicting burn delay and -duration in a way which can be obtained under the time constraints of the development process. This is accomplished by means of pure in-cylinder flow simulations without a classical combustion model. The burn delay model is based on the local distribution of the turbulent flow near the spark plug. It features also a methodology to compare different designs regarding combustion stability. The correlation for burn duration uses a turbulent characteristic number that is obtained from the turbulent flow in the combustion chamber together with a model for the turbulent burning velocity. The results show good agreement with the combustion process of the analyzed engines.
Technical Paper

Specific Durability Testing with FEV Master Program

2010-04-12
2010-01-0922
During the past years, there has been an increasing tendency to seriously question and break up old and ingrained structures in combustion engine testing. The reason for this is the continuously increasing number of engine and vehicle variants and a variety of applications resulting from it, which significantly push up development costs and times when carrying out the classical testing patterns. The following article by FEV Motorentechnik GmbH introduces a comprehensive test methodology for purposeful endurance testing of modern drive units (in particular from the fields of passenger cars and commercial vehicles). The procedure and the testing philosophy are explained in detail, illustrated by a concrete development example.
Technical Paper

Acoustics of Hybrid Vehicles

2010-06-09
2010-01-1402
The technology used in hybrid vehicle concepts is significantly different from conventional vehicle technology with consequences also for the noise and vibration behavior. In conventional vehicles, certain noise phenomena are masked by the engine noise. In situations where the combustion engine is turned off in hybrid vehicle concepts, these noise components can become dominant and annoying. In hybrid concepts, the driving condition is often decoupled from the operation state of the combustion engine, which leads to unusual and unexpected acoustical behavior. New acoustic phenomena such as magnetic noise due to recuperation occur, caused by new components and driving conditions. The analysis of this recuperation noise by means of interior noise simulation shows, that it is not only induced by the powertrain radiation but also by the noise path via the powertrain mounts. The additional degrees of freedom of the hybrid drive train can also be used to improve the vibrational behavior.
Technical Paper

Future Power Plants For Cars

2001-10-01
2001-01-3192
Environmental concern demands that emissions and fuel consumption of vehicles have to improve considerably in the next 10 years. New technologies for gasoline engines, downsizing with high boosting, direct injection and fully variable valve train systems, are being developed. For Diesel engines, improved components including piezobased injectors and particle filters are expected. In the drive train new starter-generator systems as well as automated manual transmissions are being developed. In parallel alternative fuels are investigated and the use of hybrid drives and fuel cells are developed. This paper reports the progress made in the recent years and gives a comparative assessment on the different technologies with a prediction of the introduction dates and volumes into the market.
Technical Paper

Sensitivity Study on the Design Methodology of an Electric Vehicle

2012-04-16
2012-01-0820
Reducing greenhouse gas emissions to alleviate global warming will certainly be one of the major challenges of the 21st century. Transportation plays a very important part in this, which is why the European Commission and the European manufacturers have found an agreement to limit the average emissions of vehicles to 130 gCO₂/km in 2012 and 95 gCO₂/km in 2020. Cutting vehicles' consumption of hydrocarbons is becoming a critical issue to reach these ambitious targets. Electric vehicles, characterized by zero direct CO₂ emissions, seem to be a relevant way to achieve these CO₂ emissions. Despite their capabilities to emit no local pollution and to operate silently, electric vehicles have also one important drawback: the limited autonomy offered to the customer. As for conventional vehicles, energy consumption for electric vehicles is very dependant of driving conditions, such as driving cycles and ambient temperature operating conditions for instance.
Technical Paper

Modern Gear Train Simulation Process for the Virtual Engine and Transmission Development

2006-04-03
2006-01-0585
Current simulation tools for the investigation of the dynamic system response as well as for the component stresses on the basis of multi-body and finite-element techniques are integral part of today's powertrain development efforts. These tools are typical used for the analysis and optimization of shafts, clutches, chain/belt drives, bearings, levers, brackets, housings and many other components. An exception is made by gears which today are still frequently investigated by the help of semi-empirical methods based on DIN, ISO, AGMA and the specific knowledge base of well experienced developers. The main difficulty is that the gears are rolling off via large contact surfaces with complex nonlinear mechanical contact properties. Within the scope of research work FEV developed a new method for the analysis and optimization of gear drives based on comercial multi-body and finite-element software platforms.
Technical Paper

Downsizing of Diesel Engines: 3-Cylinder / 4-Cylinder

2000-03-06
2000-01-0990
Due to the future application of combustion engines in small and hybrid vehicles, the demand for high efficiency with low mass and compact engine design is of prime importance. The diesel engine, with its outstanding thermal efficiency, is a well suited candidate for such applications. In order to realize these targets, future diesel engines will need to have increasingly higher specific output combined with increased power to weight ratios. This is therefore driving the need for new designs of 3 and/or 4 cylinder, small bore engines of low displacement, sub 1.5l. Recent work on combustion development, has shown that combustion systems, ports, valves and injector sizes are available for bore sizes down to 65 mm.
Technical Paper

Evaluation of Crankshaft Clearance Influence on Specific Roughness Noise Concern

1999-05-17
1999-01-1771
Passenger car customer expects both: low interior noise level and a sound quality, adapted to vehicle driving condition. The latter should be based upon a comfortable sound character without outstanding noise effects. One of the very unpleasant noise characteristics is roughness, also called rap noise or rumbling noise. Beside intake noise and powertrain structure bending, the dynamic crank train behaviour is one of the potential origins of a rough noise pattern. Material properties of the crankshaft and the layout of crankshaft damper can influence roughness as well as the crank train clearances. Subjects of this study, which was performed on a 4-cylinder spark-ignition (SI) engine, were the identification and objectivation of a specific noise concern which occurred during vehicle acceleration. Aim was to evaluate the noise concern sensitivity to the crank train clearances and to define optimum clearance ranges for noise quality improvement.
Technical Paper

Investigation of the Mixing Process and the Fuel Mass Concentration Fields for a Gasoline Direct-Injection Spray at ECN Spray G Conditions and Variants

2015-09-01
2015-01-1902
Within the Engine Combustion Network (ECN) research frame, the mixing process and the fuel mass concentration fields were investigated at spray G conditions and variants with optical diagnostics. Experiments were conducted in a high-temperature high-pressure constant-volume pre-combustion vessel. The target condition, called “Spray G”, which is representative of gasoline direct-injection engine conditions, uses well-defined ambient (573 K, 6 bar, 3.5 kg/m3, O2-free) and injector conditions (200 bar, eight-hole injector, 0.165 mm orifice diameter). Measurements were also conducted at 6 and 9 kg/m3 for temperatures of 700 and 800 K respectively. Two techniques were used to visualize the jet formation: p-difluorobenzene laser induced fluorescence (LIF) imaging and high-repetition-rate schlieren visualization. Images from both methods were compared in terms of jet penetration and size.
Technical Paper

Using RON Synergistic Effects to Formulate Fuels for Better Fuel Economy and Lower CO2 Emissions

2019-12-19
2019-01-2155
The knock resistance of gasoline is a key factor to decrease the specific fuel consumption and CO2 emissions of modern turbocharged spark ignition engines. For this purpose, high RON and octane sensitivity (S) are needed. This study shows a relevant synergistic effect on RON and S when formulating a fuel with isooctane, cyclopentane and aromatics, the mixtures reaching RON levels well beyond the ones of individual components. The same is observed when measuring their knock resistance on a boosted single cylinder engine. The mixtures were also characterized on a rapid compression machine at 700 K and 850 K, a shock tube at 1000 K, an instrumented and an adapted CFR engine. The components responsible for the synergistic effects are thus identified. Furthermore, the correlations plotted between these experiments results disclose our current understanding on the origin of these synergistic effects.
Technical Paper

Interpretation Tools and Concepts for the Heat Management in the Drive Train of the Future

2011-04-12
2011-01-0650
Thermal management describes measures that result in the improved engine or vehicle operation in terms of energetics and thermo mechanics. In this context the involvement of the entire power train becomes more important as the interaction between engine, transmission and temperature sensitive battery package (of hybrid vehicles or electric vehicles with range extender) or the utilization of exhaust gas thermal energy play a major role for future power train concepts. The aim of thermal management strategies is to reduce fuel consumption while simultaneously increasing the comfort under consideration of all temperature limits. In this case it is essential to actively control the heat flow, in order to attain the optimal temperature distribution in the power train components.
Technical Paper

Innovative Approach and Tools to Design Future Two-Wheeler Powertrain

2015-11-17
2015-32-0763
As congestion increases and commute times lengthen with the growing urbanization, many customers will look for effective mobility solutions. Two-wheeler are one of the solutions to deal with these issues, in particular if equipped with electrified powertrains for minimized local noise and air pollutant emissions. Scooters powertrain technology is predominantly based on Spark Ignition Engine (ICE) associated with a Continuously Variable Transmissions (CVT) and a Centrifugal Clutch. Nevertheless, even though CVT gives satisfaction in simplicity, fun to drive, cost effectiveness and vehicle dynamics, its efficiency is an undeniable drawback. Indeed, a conventional CVT is wasting more than 50% of ICE effective power in customer driving conditions. Consequently, those vehicles have high fuel consumption relative to their size, and are equipped with overpowered and heavy internal combustion engines, allowing a large area for further improvements.
X