Refine Your Search

Topic

Search Results

Journal Article

High-Speed Observation and Modeling of Dimethyl Ether Spray Combustion at Engine-Like Conditions

2015-09-01
2015-01-1927
Dimethyl Ether (DME) is one of the major candidates for the alternative fuel for compression ignition (CI) engines. However, DME spray combustion characteristics are not well understood. There is no spray model validated against spray experiments at high-temperature and high-pressure relevant to combustion chambers of engines. DME has a lower viscosity and lower volumetric modulus of elasticity. It is difficult to increase injection pressure. The injection pressure remains low at 60 MPa even in the latest DME engine. To improve engine performance and reduce emissions from DME engines, establishing the DME spray model applicable to numerical engine simulation is required. In this study, high-speed observation of DME sprays at injection pressures up to 120 MPa with a latest common rail DME injection system was conducted in a constant volume combustion vessel, under ambient temperature and pressure of 6 MPa-920 K.
Journal Article

Investigation of Mechanism for Formation of EGR Deposit by in situ ATR-FTIR Spectrometer and SEM

2016-10-17
2016-01-2351
Exhaust gas recirculation (EGR) is widely used in diesel engines to reduce nitrogen oxide (NOx) emissions. However, a lacquer is formed on the EGR valve or EGR cooler due to particulate matter and other components present in diesel exhaust, causing serious problems. In this study, the mechanism of lacquer deposition is investigated using attenuated total reflection Fourier transform infrared spectrometry (ATR-FTIR) and scanning electron microscopy (SEM). Deposition of temperature-dependent lacquers was evaluated by varying the temperature of a diamond prism between 80 and 120 °C in an ATR-FTIR spectrometer integrated into a custom-built sample line, which branched off from the exhaust pipe of a diesel engine. Lacquers were deposited on the diamond prism at 100 °C or less, while no lacquer was deposited at 120 °C. Time-dependent ATR-FTIR spectra were obtained for approximately 2 h from the beginning of the experiment.
Technical Paper

A Study of Compression Ignition Engine Operated by Various Biomass Fuels

1991-10-01
912335
The engine performance, combustion characteristics and exhaust emission of pre-chamber type compression ignition engine operated by various biomass fuels were investigated experimentally. The biomass fuel investigated in this report are an emulsified fuel made with gas oil and hydrous ethanol or hydrous methanol, an emulsified fuel made with hydrous methanol and rape-seed oil, and neat rape-seed oil, and gas oil. There are small deviations of the experimental results between the biomass fuels, however, the general tendencies of the engine performances and exhaust gas characteristics operated by biomass fuels are as follows: The brake thermal efficiency during biomass fuel operation becomes maximum at a certain injection timing as well as those of the gas oil operation. And this injection timing is advanced with increasing the biomass content in the fuel.
Journal Article

Kinetic Modeling Study of NOx Conversion Based on Physicochemical Characteristics of Hydrothermally Aged SCR/DPF Catalyst

2017-10-08
2017-01-2386
Diesel engines have better fuel economy over comparable gasoline engines and are useful for the reduction of CO2 emissions. However, to meet stringent emission standards, the technology for reducing NOx and particulate matter (PM) in diesel engine exhaust needs to be improved. A conventional selective catalytic reduction (SCR) system consists of a diesel oxidation catalyst (DOC), diesel particulate filter (DPF), and urea-SCR catalyst. Recently, more stringent regulations have led to the development of SCR systems with a larger volume and increased the cost of such systems. In order to solve these problems, an SCR catalyst-coated DPF (SCR/DPF) is proposed. An SCR/DPF system has lower volume and cost compared to the conventional SCR system. The SCR/DPF catalyst has two functions: combustion of PM and reduction of NOx emissions.
Technical Paper

Fuel Properties and Engine Performance of Dimethyl Ether-Blended Biodiesel Fuels

2007-07-23
2007-01-2016
One way to reduce CO2 in the atmosphere is to use biodiesel fuel (BDF) [1]. BDF has the advantage of low smoke combustion, since its molecules contain oxygen. Meanwhile, BDF has the drawbacks of high viscosity and a high pour point that make it difficult to use at low temperatures. Dimethyl ether (DME) can be made from biomass, as well as from natural gas or coal; therefore, it is regarded as one of the biomass fuels. DME has low viscosity and a low boiling point, and smoke-free combustion can be obtained, since it has no carbon-carbon bond [2]. On the other hand, it has the disadvantage of low lubricity due to its low viscosity. When these fuels are blended together, the weaknesses of the fuels can be overcome. The objective of this research is to show that blending these two fuels is an effective way of bringing biomass-derived fuels into practical use.
Technical Paper

Engine Performance and Exhaust Gas Characteristics of a Compression Ignition Engine Operated with DME Blended Gas Oil Fuel

1998-10-19
982538
Dimethyl Ether (DME) is a promising new alternative fuel for compression ignition DI engines. However, some problems arise from the poor lubricity of DME. Breakdown of the film bearing between needle and sleeve of the injector can lead to mechanical wear and leakage, a problem that is not mitigated easily. For example, the application of returning the leakage to fuel tank could raise a back pressure on the injection needle. This pressure can affect injection rate and consequently engine performance. In this study, fuels based on various DME to gas oil (diesel fuel) ratios were investigated, in part. Physical and chemical properties of DME and gas oil are shown to lead to mutual solubility at any ratio. Blended fuels have a higher lubricity compared with pure’ DME and a better injection spray compared with pure gas oil.
Technical Paper

Fuel Characteristics Evaluation of GTL for DI Diesel Engine

2004-03-08
2004-01-0088
In this study, advantages of GTL fueled DI diesel engine were observed, then, some cautionary areas, notably the aptitude for sealing materials, were investigated. Some advantages of using GTL as a diesel engine fuel include reduction of soot emission levels, power output and fuel consumption with GTL to conventional diesel fuel operation is equivalent, super-low sulfur content of GTL and its liquid state at normal temperature and pressure. However, there are some problems with putting GTL fuel on the market, such as lubricity, aptitude for sealing materials, high cetane index and high pour point. It is necessary to use additives to improve GTL's lubricity, and selecting the most appropriate type of lubricity improver is also important. The influence of GTL on the swelling properties of standard rubber materials seem basically the same, but it is necessary to notice on used rubbers.
Technical Paper

Spectroscopic Analysis of Combustion in the DME Diesel Engine

2004-03-08
2004-01-0089
For better understanding of the combustion characteristics in a direct injection dimethyl ether (DME) engine, the chemiluminescences of a burner flame and in-cylinder flame were analyzed using the spectroscopic method. The emission intensities of chemiluminescences were measured by a photomultiplier after passing through a monochrome-spectrometer. For the burner flame, line spectra were found nearby the wave length of 310 nm, 430 nm and 515 nm, arising from OH, CH and C2 radicals, respectively. For the in-cylinder flame, a strong continuous spectrum was found from 340 nm wave length to 550 nm. Line spectra were also detected nearby 310 nm, 395 nm and 430 nm, arising from OH, HCHO, and C2 radicals, respectively, partially overlapping with the continuous spectrum. Of these line spectra, 310 nm of OH radical did not overlapped with the continuous spectrum.
Technical Paper

Chemiluminescence Analysis from In-Cylinder Combustion of a DME-Fueled DI Diesel Engine

2003-10-27
2003-01-3192
To date, the DME combustion mechanism has been investigated by in-cylinder gas sampling, numerical calculations and observation of combustion radicals. It has been possible to quantify the emission intensities of in-cylinder combustion using a monochromator, and to observe the emitting species as images by using band-pass filters. However, the complete band images were not observed since the broadband (thermal) intensity may be stronger than band spectra intensities. Emission intensities of DME combustion radicals from a pre-mixed burner flame have been measured using a spectroscope and photomultiplier. Results were compared to other fuels, such as n-butane and methane, then, in this study, to better understand the combustion characteristics of DME, emission intensities near CH bands of an actual DI diesel engine fueled with DME were measured, and band spectra emitted from the engine were defined. Near TDC, emission intensities did not vary with wavelength.
Technical Paper

The Possibility of Gas to Liquid (GTL) as a Fuel of Direct Injection Diesel Engine

2002-05-06
2002-01-1706
In this study, engine performances and exhaust emissions characteristics of compression ignition engine fueled with GTL were investigated by comparison with diesel fuel. Diesel engine could be operated fueled with GTL without any special modify for the test engine. With the high cetane number of GTL, the ignition lag was shorter, and the combustion started earlier than that of diesel fuel. Brake thermal efficiency operated with GTL increased at middle load conditions due to incomplete combustion emission such as CO and THC were lower than that of diesel fuel operation. NOx emission with GTL was comparable to diesel fuel, and there was a little decrease at high load. With GTL, soot emission was lower than with diesel fuel at above middle load condition. It seemed to be a reason of soot reduction that there was little sulphur contained in GTL.
Technical Paper

Atomization Characteristics for Various Ambient Pressure of Dimethyl Ether (DME)

2002-05-06
2002-01-1711
Recently, dimethyl ether (DME) has been attracting much attention as a clean alternative fuel, since the thermal efficiency of DME powered diesel engine is comparable to diesel fuel operation and soot free combustion can be achieved. In this experiment, the effect of ambient pressure on DME spray was investigated with observation of droplet size such as Sauter mean diameter (SMD) by the shadowgraph and image processing method. The higher ambient pressure obstructs the growth of DME spray, therefore faster breakup was occurred, and liquid column was thicker with increasing the ambient pressure. Then engine performances and exhaust emissions characteristics of DME diesel engine were investigated with various compression ratios. The minimum compression ratio for the easy start and stable operation was obtained at compression ratio of about 12.
Technical Paper

Characteristics of Spray Formation and Combustion in Diesel Engines Operated with Dimethyl Ether

2003-05-19
2003-01-1925
Characteristics of dimethyl ether spray formation were observed using schlieren photography, and the combustion characteristics and performance of a dimethyl ether-operated diesel engine were investigated. Accordingly, this paper describes the basic characteristics of engine performance and the potential for decreased exhaust emissions, as well as discussing problems concerning the practical application of dimethyl ether-operated diesel engines.
Technical Paper

Computational and Experimental Study on the Influence of Formaldehyde on HCCI Combustion Fueled with Dimethyl Ether

2003-05-19
2003-01-1826
Computational analysis on the mechanism and control method for DME fueled HCCI type combustion was carried out on the basis of the chemical kinetics. The calculation results were verified experimentally using a single cylinder test engine. Analysis of the results showed that DME oxidation is governed by production/consumption behavior of OH, because DME oxidation is initiated by dehydrogenation with OH radicals. It was also shown that the overall oxidation reaction could be controlled by adding substances which react competitively with OH in the dehydrogenation reactions of DME. Of the substances we tested, formaldehyde was most effective. It was confirmed by engine testing that by adding a small amount of formaldehyde to the DME/air mixture, the heat evolved in the low temperature reactions was reduced and the reaction appearance timing was retarded.
Technical Paper

Spectroscopic Analysis of Combustion Flame Fueled with Dimethyl Ether (DME)

2003-05-19
2003-01-1797
To better understand the combustion characteristics of DME, emission intensities of DME combustion radicals from a pre-mixed burner flame were measured by a spectroscope and photomultiplier, Results were compared to other fuels, such as methane and butane. Large peaks in the band spectra from pre-mixed and diffusion DME flames were found near 310 nm, 430 nm, and 515 nm, arising from OH, CH and C2, respectively. The DME emission intensities decreased with increasing the equivalence ratio in this study. Notably, the relative decrease in the C2 band spectra peak was greater than that of the OH band. Comparing the pre-mixed DME and butane flames, the butane band spectra peaks were similar in shape, but much stronger than those for DME. However, it was remarkable that CH and C2 band spectra peaks decreased only slightly with increase in equivalence ratio compared to the DME case.
Technical Paper

A Spark Ignition Engine Operated by Oxygen Enriched Air

1992-10-01
922174
The impact of minutely oxygen-enriched air on spark-ignition (SI) engine combustion was studied by obtaining engine performance measurements and investigating in-cylinder reactions. This study was initiated to determine if development of a new air-cleaner method, which may employ molecular sieve or membrane technology to slightly increase the oxygen concentration in the inducted air, is beneficial for engine operations. The air introduced into a single-cylinder SI engine was added with oxygen to produce oxygen concentrations of 21, 22 and 23%. Some results from engine tests performed with the oxygen enrichment are: The heat release lag, cycle variation and combustion period decreased; substantial reduction of emissions of unburned hydrocarbon emission and noticeable decrease of carbon monoxide were observed; and the brake thermal efficiency and engine output increased.
Technical Paper

Ignition Mechanisms of HCCI Combustion Process Fueled With Methane/DME Composite Fuel

2005-04-11
2005-01-0182
Homogeneous charge compression ignition (HCCI) combustion of methane was performed using dimethyl ether (DME) as an ignition improver. The ignition mechanisms of the methane/DME/air HCCI process were investigated on the basis of the chemical kinetics. The engine test was also conducted to verify the calculation results, and to determine the operation range. Analysis of the results showed that DME was an excellent ignition improver for methane, having two functions of temperature rise and OH radical supply. It was also shown that the operation range was extended to an overall equivalence ratio of 0.54 without knocking, by controlling DME quantity.
Technical Paper

Real World Emissions Analysis Using Sensor-based Emissions Measurement System for Light-duty Direct-Injection Gasoline Vehicle

2022-03-29
2022-01-0572
In recent years, particulate matter (PM) emitted from direct-injection gasoline vehicles is becoming an increasingly concerning problem. In addition, it is often reported that ammonia (NH3) is emitted from gasoline vehicles equipped with a three-way catalyst. These emissions might be largely emitted especially when driving in on-road driving conditions. In this study, we investigated the emissions, NOx, NH3, and PM/PN (particulate number) of a light-duty direct-injection gasoline vehicle when driving on actual roads. Using a small direct-injection gasoline vehicle equipped with a three-way catalyst, experiment was conducted 8 times on the same route, and these emissions were measured. In this study, vehicle specific power (VSP) was introduced, which can be calculated using vehicle parameters, vehicle speed, and road gradient. The effects of parameters acquired through on-board diagnostics (OBD) port and VSP on emissions were investigated.
Technical Paper

Development of an LPG DI Diesel Engine Using Cetane Number Enhancing Additives

1999-10-25
1999-01-3602
A feasibility study of an LPG DI diesel engine has been carried out to study the effectiveness of two selected cetane enhancing additives: Di-tertiary-butyl peroxide (DTBP) and 2-Ethylhexyl nitrate (EHN). When more than either 5 wt% DTBP or 3.5 wt% 2EHN was added to the base fuel (100 % butane), stable engine operation over a wide range of engine loads was possible (BMEPs of 0.03 to 0.60 MPa). The thermal efficiency of LPG fueled operation was found to be comparable to diesel fuel operation at DTBP levels over 5 wt%. Exhaust emissions measurements showed that NOx and smoke levels can be significantly reduced using the LPG+DTBP fuel blend compared to a light diesel fuel at the same experimental conditions. Correlations were derived for the measured ignition delay, BMEP, and either DTBP concentration or cetane number. When propane was added to a butane base fuel, the ignition delay became longer.
Technical Paper

Spectroscopic Investigation of the Combustion Process in an LPG Lean-burn SI Engine

1999-10-25
1999-01-3510
Band spectrum images for CH, OH and CHO were taken in a heavy duty type LPG lean-burn SI engine, to investigate the combustion process as it pertains to the pollutant formation process in the post flame region. Full spectra and band spectrum flame images were observed with a bottom view single cylinder research engine and two high speed cameras. NOx emissions were also measured for excess air ratios ranging from 1.0 to 1.6. A thermodynamic model, including the detailed chemical kinetic mechanism for LPG and NOx formation reactions, was developed to predict the major reaction species in the post flame region, and NOx emissions during the combustion process. The model qualitatively described the flame images for each band spectrum and could predict the measured NOx emissions very well.
Technical Paper

NO Emission Characteristics of a CI Engine Fueled with Neat Dimethyl Ether

1999-03-01
1999-01-1116
In this study, the NO emission characteristics of a dimethyl ether fueled compression ignition (CI) engine were studied, and a suitable combustion control concept was developed. A three-zone thermo-chemical model was used to understand the basic NO formation characteristics with dimethyl ether. The experimental study was carried out using a small direct-injection diesel engine. Comparison of the experimental and calculated results showed that the dimethyl ether / air mixing process was relatively slow compared with diesel fuel, which is the main reason for the relatively high NO emissions with dimethyl ether operation, in spite of its lower adiabatic flame temperature. To reduce the high temperature period, turbulence was introduced into the combustion chamber by a high-turbulence combustion system, which reduced NO emissions. It became clear that acceleration of the mixing process is an important factor for NO reduction with dimethyl ether spray combustion.
X