Refine Your Search

Search Results

Viewing 1 to 5 of 5
Journal Article

Markov Chain-based Reliability Analysis for Automotive Fail-Operational Systems

2017-03-28
2017-01-0052
A main challenge when developing next generation architectures for automated driving ECUs is to guarantee reliable functionality. Today’s fail safe systems will not be able to handle electronic failures due to the missing “mechanical” fallback or the intervening driver. This means, fail operational based on redundancy is an essential part for improving the functional safety, especially in safety-related braking and steering systems. The 2-out-of-2 Diagnostic Fail Safe (2oo2DFS) system is a promising approach to realize redundancy with manageable costs. In this contribution, we evaluate the reliability of this concept for a symmetric and an asymmetric Electronic Power Steering (EPS) ECU. For this, we use a Markov chain model as a typical method for analyzing the reliability and Mean Time To Failure (MTTF) in majority redundancy approaches. As a basis, the failure rates of the used components and the microcontroller are considered.
Technical Paper

Cyber Security in the Automotive Domain – An Overview

2017-03-28
2017-01-1652
Driven by the growing internet and remote connectivity of automobiles, combined with the emerging trend to automated driving, the importance of security for automotive systems is massively increasing. Although cyber security is a common part of daily routines in the traditional IT domain, necessary security mechanisms are not yet widely applied in the vehicles. At first glance, this may not appear to be a problem as there are lots of solutions from other domains, which potentially could be re-used. But substantial differences compared to an automotive environment have to be taken into account, drastically reducing the possibilities for simple reuse. Our contribution is to address automotive electronics engineers who are confronted with security requirements. Therefore, it will firstly provide some basic knowledge about IT security and subsequently present a selection of automotive specific security use cases.
Technical Paper

Timing Analysis and Tracing Concepts for ECU Development

2014-04-01
2014-01-0190
Integration scenarios for ECU software become more complicated, as more constraints with regards to timing, safety and security need to be considered. Multi-core microcontrollers offer even more hardware potential for integration scenarios. To tackle the complexity, more and more model based approaches are used. Understanding the interaction between the different software components, not only from a functional but also from a timing view, is a key success factor for high integration scenarios. In particular for multi-core systems, an amazing amount of timing data can be generated. Usually a multi-core system handles more software functionality than a single-core system. Furthermore, there may be timing interference on the multicore systems, due to the shared usage of buses, memory banks or other hardware resources.
Technical Paper

Efficient Virtualization for Functional Integration on Modern Microcontrollers in Safety-Relevant Domains

2014-04-01
2014-01-0206
The infrastructure in modern cars is a heterogeneous and historically grown network of different field buses coupling different electronic control units (ECUs) from different sources. In the past years, the amount of ECUs in the network has rapidly grown due to the mushrooming of new functions which historically were mostly implemented on a one-ECU-per-function basis resulting in up to a hundred ECUs in fully equipped luxury cars. Additionally, new functions like parking assist systems or advanced chassis control functions are getting increasingly complex and require more computing power. These two facts add up to a complex challenge in development. The current trend to host several functions in single ECUs as integration platforms is one attempt to address this challenge. This trend is supported by the increased computing power of current and upcoming multi-core microcontrollers.
Technical Paper

Architectural Concepts for Fail-Operational Automotive Systems

2016-04-05
2016-01-0131
The trend towards even more sophisticated driver assistance systems and growing automation of driving sets new requirements for the robustness and availability of the involved automotive systems. In case of an error, today it is still sufficient that safety related systems just fail safe or silent to prevent safety related influence of the driving stability resulting in a functional deactivation. But the reliance on passive mechanical fallbacks in which the human driver taking over control, being inevitable in such a scenario, is expected to get more and more insufficient along with a rising degree of driving automation as the driver will be given longer reaction time. The advantage of highly or even fully automated driving is that the driver can focus on other tasks than controlling the car and monitoring it’s behavior and environment.
X