Refine Your Search

Search Results

Viewing 1 to 12 of 12
Video

An Experimental Analysis on Diesel/n-Butanol Blends Operating in Partial Premixed Combustion in a Light Duty Diesel Engine

2012-06-18
This paper reports results of an experimental investigation performed on a commercial diesel engine supplied with fuel blends having low cetane number to attain a simultaneous reduction in NOx and smoke emissions. Blends of 20% and 40% of n-butanol in conventional diesel fuel have been tested, comparing engine performance and emissions to diesel ones. Taking advantage of the fuel blend higher resistance to auto ignition, it was possible to extend the range in which a premixed combustion is achieved. This allowed to match the goal of a significant reduction in emissions without important penalties in fuel consumption. The experimental activity was carried on a turbocharged, water cooled, 4 cylinder common rail DI diesel engine. The engine equipment included an exhaust gas recirculation system controlled by an external driver, a piezo-quartz pressure transducer to detect the in-cylinder pressure signal and a current probe to acquire the energizing current to the injector.
Journal Article

Methodology for the analysis of a 4-stroke moped emission behaviour

2009-09-13
2009-24-0142
Mopeds are popular means of transportation, particularly in southern Europe and in eastern and southern Asia. The relative importance of their emissions increases in urban environments which host large fleets of mopeds. In Naples, for example, mopeds make a considerable contribution to HC emissions (about 53%), although the percentage of mopeds (12.4%) in the total circulating fleet is lower than that of other vehicle categories [1]. This study presents a method for analysing the influence of kinematic parameters on the emission factors of mopeds during the “cold-start” and “hot” phases of elementary kinematic sequences (speed-time profiles between two successive stops). These elementary sequences were obtained through appropriate fragmentation of complex urban driving cycles. In a second step, we show how to estimate, for the whole cycle, the duration of the cold phase and the relevant time-dependence function.
Technical Paper

Potential of Multiple Injection Strategy for Low Emission Diesel Engines

2002-03-04
2002-01-1150
A PC-programmable electronic control unit (PECU), able to manage both conventional and future electronic injection systems to make a fixed number of consecutive injections (1 to 5 or more) controlling the injection pressure and the injection pulses duration as well as the separation time or dwell in between was used to study the behaviour of a Bosch common rail injection system both on dynamic spray bench and on engine test bench. The PECU allowed a reduction in the dwell time between consecutive injection pulses from the current value of 1800 μs to 500 μs. Photographic sequences of a five holes mini-sac nozzle making five consecutive injections at 400 - 800 and 1200 bar respectively were taken at ambient pressure and temperature. They showed that both spray penetration and cone angle at all operative conditions are very uniform and stable.
Technical Paper

Particulate Measurement by Simultaneous Polychromatic Scattering and Extinction Coefficients

1992-02-01
920113
A chemical and physical characterization of particulate emitted in undiluted exhaust of single cylinder direct injection (D.I.) diesel engine was made by an optical technique. On-line scattering and extinction measurements in the spectral range from 200 to 500nm were carried out in the exhaust ofthe engine operating under steady-state conditions. These measurements provided a useful tool for the comprehension of chemical and physical structure of the particulate. They allowed the evaluation in real time of the size, the concentration and also the optical properties. Preliminary results of size and mass concentration of particulate are presented. A good agreement was observed comparing the results with those obtained by gravimetric measurements, TEM and X-ray diffraction. HIGH EFFICENCY OF DIESEL ENGINES and their ability to burn heavy fuels make them ofgreat interest in the transportation field.
Technical Paper

An Experimental Analysis on Diesel/n-Butanol Blends Operating in Partial Premixed Combustion in a Light Duty Diesel Engine

2012-04-16
2012-01-1127
This paper reports results of an experimental investigation performed on a commercial diesel engine supplied with fuel blends having low cetane number to attain a simultaneous reduction in NOx and smoke emissions. Blends of 20% and 40% of n-butanol in conventional diesel fuel have been tested, comparing engine performance and emissions to diesel ones. Taking advantage of the fuel blend higher resistance to auto ignition, it was possible to extend the range in which a premixed combustion is achieved. This allowed to match the goal of a significant reduction in emissions without important penalties in fuel consumption. The experimental activity was carried on a turbocharged, water cooled, 4 cylinder common rail DI diesel engine. The engine equipment included an exhaust gas recirculation system controlled by an external driver, a piezo-quartz pressure transducer to detect the in-cylinder pressure signal and a current probe to acquire the energizing current to the injector.
Technical Paper

Impact of Ethanol-Gasoline Port Injected on Performance and Exhaust Emissions of a Turbocharged SI Engine

2018-04-03
2018-01-0914
This paper presents results of an experimental investigation on a flexible port dual fuel injection using different ethanol to gasoline mass fractions. A four stroke, two cylinder turbocharged SI engine was used for the experiments. The engine speed was set at 3000 rpm, tests were carried out at medium-high load and two air-fuel-ratio. The initial reference conditions were set running the engine, fueled with full gasoline at the KLSA boundary, in accordance with the standard ECU engine map. This engine point was representative of a rich mixture (λ=0.9) in order to control the knock and the temperature at turbine inlet. The investigated fuels included different ethanol-gasoline mass fractions (E10, E20, E30 and E85), supplied by dual injection within the intake manifold. A spark timing sweep, both at stoichiometric and lean (λ=1.1) conditions, up to the most advanced one without knock was carried out.
Technical Paper

Analysis of In-Cylinder Turbulent Air Motion Dependence on Engine Speed

1994-03-01
940284
In-cylinder cycle-resolved LDV measurements have been made in a diesel engine having a high-squish re-entrant combustion chamber with compression ratio of 21:1. The engine has been motored in the range of 1000 to 3000 rpm thanks to the use of self-lubricating seeding particles. Conventional ensemble-averaging and filtering techniques have been used for analyzing instantaneous velocity data obtained at two points along a diameter located in a horizontal plane at 5 mm below the engine head. The dependence of the mean motion and turbulence on engine speed has been evaluated. The effect of cut-off frequency selection on turbulence values has been also analyzed. Moreover, the Kolmogorov's -5/3 power domain has been investigated in detail by spectral analysis on the instantaneous velocity data.
Technical Paper

Effect of Different Fuels Properties on Emissions and Performance of a Light Duty Four-Cylinder Diesel Engine Under Premixed Combustion

2014-10-13
2014-01-2674
The use of biodiesel or oxygenated fuels from renewable sources in diesel engines is of particular interest because of the low environmental impact that can be achieved. The present paper reports results of an experimental investigation performed on a light duty diesel engine fuelled with biodiesel, gasoline and butanol mixed, at different volume fractions, with mineral diesel. The investigation was performed on a turbocharged DI four cylinder diesel engine for automotive applications equipped with a common rail injection system. Engine tests were carried out at 2500 rpm, 0.8 MPa of brake mean effective pressure selecting a single injection strategy and performing a parametric analysis on the effect of combustion phasing and oxygen concentration at intake on engine performance and exhaust emissions. The experiments demonstrated that the fuel properties have a strong impact on soot emissions.
Technical Paper

Heat Transfer Analysis of Catalytic Converters during Cold Starts

2019-09-09
2019-24-0163
The transient heat transfer behavior of an automotive catalytic converter has been simulated with OpenFOAM in 1D. The model takes into consideration the gas-solid convective heat transfer, axial wall conduction and heat capacity effects in the solid phase, but also the chemical reactions of CO oxidation, based on simplified Arrhenius and Langmuir-Hinshelwood approaches. The associated parameters are the results of data in literature tuned by experiments. Simplified cases of constant flow rates and gas temperatures in the catalyst inflow have been chosen for a comprehensive analysis of the heat and mass transfer phenomena. The impact of inlet flow temperatures and inlet flow rates on the heat up characteristics as well as in the CO emissions have been quantified. A dimensional analysis is proposed and dimensionless temperature difference and space-time coordinates are introduced.
Technical Paper

A Study of Physical and Chemical Delay in a High Swirl Diesel System via Multiwavelength Extinction Measurements

1998-02-23
980502
The characterization of a turbulent diesel spray combustion process has been carried out in a divided chamber diesel system with optical accesses. Laser Doppler Anemometry, spectral extinction and flame intensity measurements have been performed from U.V., to visible from the start of injection to the end of combustion, at fixed air/fuel ratio and different engine speeds. Spatial distribution of fuel and vapor as well as the ignition location and soot distribution have been derived in order to study the mechanism of the air-fuel interaction and the combustion process. The analysis of results has shown that the high swirling motion transports the fuel towards the left part of the chamber and breaks up the jet into small droplets of different sizes and accelerates the fuel vaporization. Then, chemical and physical overlapped phases were observed during the ignition delay, contributing both to autoignition.
Journal Article

Particle and Gaseous Emissions from a Heavy-Duty SI Gas Engine over WHTC Driving Cycles

2019-12-19
2019-01-2222
The use of gaseous fuels in internal combustion engines is increasing, due to several reasons, first of all their low environmental impact, large availability and low cost. Nevertheless, the need to reduce emissions also from gas engines is an important aspect to be considered in order to comply with future engine emissions regulations. In this scenario, an extensive experimental activity was performed to fully characterize an heavy duty spark ignition engine, under development for Euro VI compliance and designed to run with gaseous fuels. Two separate sets of experiments were carried out, in order to analyze the engine behavior when burning LPG and CNG, respectively. To this aim, the engine was installed on a dynamic test bench, accurately instrumented to characterize the combustion evolution, performance and exhaust pollutant emissions, along the World Harmonized Transient Cycle (WHTC), the new European driving homologation cycle.
Technical Paper

A Consistent Dual-Mesh Framework for Hybrid LES/RANS Simulations of Vehicle Exhaust Plumes: Implications for Remote Emission Sensing

2023-08-28
2023-24-0105
Remote emission sensing (RES) is a non-intrusive measurement method based on absorption spectroscopy, which allows for the determination of pollutant concentrations in vehicle exhaust plumes. By measuring the absorption of the exhaust plume from the roadside using a light/laser barrier, concentration ratios of pollutants, such as nitrogen oxides to carbon dioxide, can be estimated. Computational fluid dynamics (CFD) has been employed to simulate vehicle exhaust plumes due to uncertainties in RES capabilities. In a previous study, Unsteady Reynolds-Averaged Navier-Stokes (URANS) simulations were conducted to investigate the dispersion of vehicle exhaust plumes under various ambient/driving conditions and provide insights for RES applications. However, the accuracy of these simulations can be further improved. Therefore, this study focuses on enhancing the simulation accuracy by employing large eddy simulations (LES).
X