Refine Your Search

Topic

Author

Search Results

Journal Article

Influence of the Upper Body of Pedestrians on Lower Limb Injuries and Effectiveness of the Upper Body Compensation Method of the FlexPLI

2015-04-14
2015-01-1470
Current legform impact test methods using the FlexPLI have been developed to protect pedestrians from lower limb injuries in collisions with low-bumper vehicles. For this type of vehicles, the influence of the upper body on the bending load generated in the lower limb is compensated by setting the impact height of the FlexPLI 50 mm above that of pedestrians. However, neither the effectiveness of the compensation method of the FlexPLI nor the influence of the upper body on the bending load generated in the lower limb of a pedestrian has been clarified with high-bumper vehicles. In this study, therefore, two computer simulation analyses were conducted in order to analyze: (1) The influence of the upper body on the bending load generated in the lower limb of a pedestrian when impacted by high-bumper vehicles and (2) The effectiveness of the compensation method for the lack of the upper body by increasing impact height of the FlexPLI for high-bumper vehicles.
Journal Article

An Experimental Study on the Fire Response of Vehicles with Compressed Hydrogen Cylinders

2010-04-12
2010-01-0134
To investigate the events that could arise when fighting fires in vehicles with carbon fiber reinforced plastic (CFRP) hydrogen storage cylinders, we conducted experiments to examine whether a hydrogen jet diffusion flame caused by activation of the pressure relief device (PRD) can be extinguished and how spraying water influences the cylinder and PRD. The experiments clarified that the hydrogen jet flame cannot be extinguished easily with water or dry powder extinguishers and that spraying water during activation of the PRD may result in closure of the PRD, but is useful for maintaining the strength of CFRP composite cylinders for vehicles.
Journal Article

Validation of the Localized Fire Test Method for On-Board Hydrogen Storage Systems

2014-04-01
2014-01-0421
The localized fire test provided in the Global Technical Regulation for Hydrogen Fuel Cell Vehicles gives two separate test methods: the ‘generic installation test - Method 1′ and the ‘specific vehicle installation test - Method 2′. Vehicle manufacturers are required to apply either of the two methods. Focused on Method 2, the present study was conducted to determine the characteristics and validity of Method 2. Test results under identical burner flame temperature conditions and the effects of cylinder protection covers made of different materials were compared between Method 1 and Method 2.
Journal Article

Developing Safety Standards for FCVs and Hydrogen Vehicles

2009-04-20
2009-01-0011
The SAE Fuel Cell Vehicle (FCV) Safety Working Group has been addressing FCV safety for over 9 years. The initial document, SAE J2578, was published in 2002. SAE J2578 has been valuable as a Recommended Practice for FCV development with regard to the identification of hazards and the definition of countermeasures to mitigate these hazards such that FCVs can be operated in the same manner as conventional gasoline internal combustion engine (ICE)-powered vehicles. SAE J2578 is currently being revised so that it will continue to be relevant as FCV development moves forward. For example, test methods were refined to verify the acceptability of hydrogen discharges when parking in residential garages and commercial structures and after crash tests prescribed by government regulation, and electrical requirements were updated to reflect the complexities of modern electrical circuits which interconnect both AC and DC circuits to improve efficiency and reduce cost.
Journal Article

Investigation of the Impact Phenomenon During Minor Collision

2013-04-08
2013-01-1545
ISO 12405-1,2 specifies international testing standards for lithium-ion batteries for vehicles. In the mechanical shock test is used to determine if the battery is damaged due to the shock imposed when the vehicle runs over a curb or similar minor accidents. Therefore, we conducted minor collision tests against a curb using an actual vehicle and compared the test results with the conditions specified in ISO 12405-1,2. The results confirmed that the impulse wave obtained using an actual vehicle within the range of the test in this study differs from the shape of the impulse wave specified in ISO 12405-1,2.
Technical Paper

Oxidation Degradation and Acid Generation in Diesel Fuel Containing 5% FAME

2007-07-23
2007-01-2027
Compared with diesel fuel, FAME is relatively unstable and readily generates acids such as acetic acid and propionic acid. When FAME-blended diesel fuel is used in existing diesel vehicles, it is important to maintain the concentration of FAME-origin acid in the fuel at an appropriately low level to assure vehicle safety. In the present study, the oxidation of diesel fuel containing 5% FAME is investigated. Several kinds of FAMEs were examined, including reagents such as methyl linoleate and methyl linolenate, as well as commercially available products. The level of acid, peroxide, water, and methanol and the pressure of the testing vessel were measured. The result shows that unsaturated FAMEs that have two or more double bonds are unstable. Also, water is generated by oxidation of FAME blended diesel fuel, accelerating corrosion of the terne sheet.
Technical Paper

Thermal Behavior in Hydrogen Storage Tank for Fuel Cell Vehicle on Fast Filling

2007-04-16
2007-01-0688
The current hydrogen storage systems for fuel-cell vehicles are mainly a compressed hydrogen storage type, but it is known that the temperature inside the tank commonly increases while the tank is being filled with hydrogen. This study examines filling methods that prevent the temperature from exceeding the designed temperature of the tank. In order to propose a filling method that suppresses the temperature rise inside the tank and achieves filling within a short time, fast-filling tests were conducted on test tanks designed for fast filling of fuel cell vehicles. The detailed influences of the differences in type of tank and filling pressure on the rate of the internal temperature increase were investigated. Thermal responses were measured at various parts inside and outside the tank while varying the filling pressure, type of tank, tank capacity, filling time, and filling pattern, using a test tank that allows multi-point measurement of the internal temperature.
Technical Paper

Developing Safety Standards for FCVs and Hydrogen Vehicles

2010-04-12
2010-01-0131
The SAE Fuel Cell Vehicle (FCV) Safety Working Group has been addressing FCV safety for over 10 years. The initial document, SAE J2578, was published in 2002. SAE J2578 has been valuable as a Recommended Practice for FCV development with regard to the identification of hazards associated with the integration of hydrogen and electrical systems onto the vehicle and the definition of countermeasures to mitigate these hazards such that FCVs can be operated in the same manner as conventional gasoline internal combustion engine (ICE)-powered vehicles. An update to SAE J1766 for post-crash electrical safety was also published in 2008 to reflect unique aspects of FCVs and to harmonize electrical requirements with international standards. In addition to SAE J2578 and J1766, the SAE FCV Safety Working Group also developed a Technical Information Report (TIR) for vehicular hydrogen systems (SAE J2579).
Technical Paper

Injury Pattern and Response of Human Thigh under Lateral Loading Simulating Car-Pedestrian Impact

2004-03-08
2004-01-1603
The main objective of the present study is to determine experimentally the injury patterns and response of the human thigh in lateral impacts simulating more closely the real impact conditions in car-pedestrian accidents. We conducted in-vitro experiments on thirteen thighs of eight completely intact Post Mortem Human Subjects (PMHSs). The thigh was hit by a ram at a speed of 35 km/h at the mid-shaft of the femur in each completely intact PMHS. Since the effect of cumulative injuries should be avoided, each thigh was impacted only once. Three impact energies were used; 450J, 600J and 700J. The PMHS motion was not constrained so as to simulate the walking posture of a pedestrian. We analyzed the peak values of the impact force of the ram and the femur acceleration. Injury was assessed by dissecting the lower extremities.
Technical Paper

J-NCAP: Today and tomorrow

2001-06-04
2001-06-0157
The New Car Assessment Program in Japan (JNCAP) was launched in 1995 in order to improve car safety performance. According to this program, installation conditions of safety devices and the results for braking performance and full- frontal crash tests are published every year. Introduction of JNCAP significantly increases the installation rate of safety devices and contributes much in enhancement of safety as seen in the decrease in the average injury severity of drivers and passengers. Side impact and offset frontal crash tests were introduced in 1999 and 2000, respectively. At present, the overall crash safety rating is carried out based on the results of the full-frontal, offset frontal, and side impact tests.
Technical Paper

Japanese research activity on future side impact test procedures

2001-06-04
2001-06-0155
This paper summarizes a future side impact test procedure based on the Japanese presentation at the recent IHRA Side Impact WG meeting. Under current Japanese regulations, the MDB specifications and test procedures were determined based on a market study more than ten years ago. Thus, they may not reflect current automobile characteristics, the actual accident situation, and crash test results. In this study (1) the vehicle types, velocity of striking and struck vehicles, body injury regions, causes of injuries, etc., are reviewed with reference to the latest Japanese side impact accident data. The occupant percentages for the non-struck-side, rear seat and for female occupants as well as the injury levels were analyzed. (2) To determine the MDB specifications, based on data from passenger car models registered in 1998, the curb mass, geometry and stiffness were examined. (3) For factorial analysis, side impact tests were performed as for real accidents.
Technical Paper

JNCAP: Developing overall rating protocol

2001-06-04
2001-06-0156
The Japan New Car Assessment Program (JNCAP) was launched in 1995 in order to improve car safety performance. According to this program, installation conditions of safety devices and the results for braking performance and full- frontal crash test are published every year. The side impact test was introduced in 1999. In 2000, the offset frontal crash test was also introduced. From the viewpoint of such a diversification of the crash tests, an overall assessment method for the safety of cars which reflects road accidents has been demanded. In this study, we have examined a new overall assessment method capable of reflecting the traffic accident situation in Japan using methods employed or planned by USA-NCAP, Euro-NCAP, TUB-NCAP and others as references. As the basic concept, JNCAP conducts three types of crash tests including the full-frontal crash test, offset frontal crash test, and side impact test to assess the dummy injury parameters.
Technical Paper

Research on bus passenger safety in frontal impacts

2001-06-04
2001-06-0210
Guidelines with regard to the body strength of buses have been drawn up in Japan. We now pass to the second step in research to assure the greater safety of bus crews and passengers by launching a study on further reduction of collision injuries to bus occupants. As a way to reduce such passenger injuries, our focus is the optimization of energy absorption, the arrangement of equipment on the passenger seat back, the seat frame construction, mounting and so on. The study was conducted using an experimental method together with FEM computer simulation. The findings from a sled impact test simulating a seat in a bus in a frontal collision are stated as follows. 1.Further consideration should be given to the present conventional ELR two-point seat belt. 2.One way to reduce passenger injury is to optimize the space between seats.
Technical Paper

Establishing Localized Fire Test Methods and Progressing Safety Standards for FCVs and Hydrogen Vehicles

2011-04-12
2011-01-0251
The SAE Fuel Cell Vehicle (FCV) Safety Working Group has been addressing FCV safety for over 11 years. In the past couple of years, significant attention has been directed toward a revision to the standard for vehicular hydrogen systems, SAE J2579(1). In addition to streamlining test methodologies for verification of Compressed Hydrogen Storage Systems (CHSSs) as discussed last year,(2) the working group has been considering the effect of vehicle fires, with the major focus on a small or localized fire that could damage the container in the CHSS and allow a burst before the Pressure Relief Device (PRD) can activate and safely vent the compressed hydrogen stored from the container.
Technical Paper

Research on Severity Class Evaluation Based on Various Crash Situations Involved with Motorcycles for ISO 26262

2016-11-08
2016-32-0057
ISO 26262 was established in 2011 as a functional safety standard for road vehicles. This standard provides safety requirements according to ASIL (Automotive Safety Integrity Level) in order to avoid unreasonable residual risk caused by malfunctioning behavior of electrical and/or electronic systems. The ASIL is determined by considering the estimate of three factors including injury severity. While applicable only to passenger cars at present, motorcycles will be included in the scope of application of ISO 26262 in the next revision. Therefore, our previous study focused on severity class evaluation for motorcycles. A method of classifying injury severity according to vehicle speed was developed on the basis of accident data. In addition, a severity table for motorcycles was created using accident data in representative collision configurations involved with motorcycles in Japan.
Technical Paper

Simplifying the Structural Design of the Advanced Pedestrian Legform Impactor for Use in Standardized Testing

2018-04-03
2018-01-1049
The advanced Pedestrian Legform Impactor (aPLI) incorporates a number of enhancements for improved lower limb injury prediction capability with respect to its predecessor, the FlexPLI. The aPLI also incorporates a simplified upper body part (SUBP), connected to the lower limb via a mechanical hip joint, that expands the impactor’s applicability to evaluate pedestrian’s lower limb injury risk also in high-bumper cars.As the aPLI has been developed to be used in standardized testing, further considerations on the impactor’s manufacturability, robustness, durability, usability, and repeatability need to be accounted for.. The aim of this study is to define and verify, by means of numerical analysis, a battery of design modifications that may simplify the manufacturing and use of physical aPLIs, without reducing the impactors’ biofidelity. Eight candidate parameters were investigated in a two-step numerical analysis.
Technical Paper

Assessment Method of Effectiveness of Passenger Seat Belt Reminder

2012-04-16
2012-01-0050
Seat belts for rear passengers are not commonly used, even though they can significantly reduce fatalities. A passenger seat belt reminder (PSBR) is installed in order to encourage seat belt use, but the effectiveness of PSBRs on the rear seat passenger has not yet been proven. We have developed a methodology to assess PSBR effectiveness. There are two pathways to encourage seat belt use. The first is that PSBR directly facilitates the passenger's use. The second is to motivate the driver request passengers to use seat belts. In the experiment, we asked participants sitting in the driver's seat to select one of five ranks of likelihood to encourage the passenger when a PSBR was presented. We also asked participants sitting in the rear passenger seat to select the rank of likelihood to use the belt voluntarily with PSBR and that to use the belt when the driver requested. The degree of likelihood was quantified by averaging the assigned percentage values to the ranks.
Technical Paper

Injury Pattern and Tolerance of Human Pelvis Under Lateral Loading Simulating Car-pedestrian Impact

2003-03-03
2003-01-0165
Numerous studies of pelvic tolerance to lateral impact aimed at protecting car occupants have been conducted on Post Mortem Human Subjects (PMHSs) in a sitting posture. However, it remains unclear whether or not the results of these studies are relevant when evaluating the injury risk to walking pedestrians impacted by a car. Therefore, the first objective of the present study is to determine the injury tolerance and to describe the injury mechanisms of the human pelvis in lateral impacts simulating car-pedestrian accidents. The second objective is to obtain data for validation of mathematical models of the pelvis. In-vitro experiments were conducted on twelve PMHSs in simulated standing position. The trochanter of each PMHS was hit by a ram at speed of 32 km/h, and the pelvic motion was constrained by a bolt. This type of pelvic constraint is difficult to simulate in mathematical models.
Technical Paper

R&D and Analysis of Energy Consumption Improvement Factor for Advanced Clean Energy HEVs

2005-10-24
2005-01-3828
Ultra-low energy consumption and ultra-low emission vehicle technologies have been developed by combining petroleum-alternative clean energy with a hybrid electric vehicle (HEV) system. Their component technologies cover a wide range of vehicle types, such as passenger cars, delivery trucks, and city buses, adsorbed natural gas (ANG), compressed natural gas (CNG), and dimethyl ether (DME) as fuels, series (S-HEV) and series/parallel (SP-HEV) for hybrid types, and as energy storage systems (ESSs), flywheel batteries (FWBs), capacitors, and lithium-ion (Li-ion) batteries. Evaluation tests confirmed that the energy consumption of the developed vehicles is 1/2 of that of conventional diesel vehicles, and the exhaust emission levels are comparable to Japan's ultra-low emission vehicle (J-ULEV) level.
Technical Paper

Effect of Alcohol Fuels on Fuel-Line Materials of Gasoline Vehicles

2005-10-24
2005-01-3708
In 1999, some Japanese fuel suppliers sold highly concentrated alcohol fuels, which are mixtures of gasoline and oxygenates, such as alcohol or ether, in amounts of 50% or more. In August 2001, it was reported that some vehicle models using the highly concentrated alcohol fuels encountered fuel leakage and vehicle fires due to corrosion of the aluminum used for the fuel-system parts. The Ministry of Economy, Trade and Industry (METI) and the Ministry of Land, Infrastructure and Transport Government of Japan (MLIT) jointly established the committee on safety for highly concentrated alcohol fuels in September 2001. The committee consisted of automotive technology and metal corrosion experts knowledgeable about preventing such accidents and ensuring user safety. Immersion tests were conducted on metals and other materials used for the fuel-supply system parts to determine the corrosion resistance to each alcohol component contained in the highly concentrated alcohol fuels.
X