Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

New Methodology for Transient Engine Rig Experiments for Efficient Parameter Tuning

2013-12-20
2013-01-9043
When performing catalyst modeling and parameter tuning it is desirable that the experimental data contain both transient and stationary points and can be generated over a short period of time. Here a method of creating such concentration transients for a full scale engine rig system is presented. The paper describes a valuable approach for changing the composition of engine exhaust gas going to a DOC (or potentially any other device) by conditioning the exhaust gas with an additional upstream DOC and/or SCR. By controlling the urea injection and the DOC bypass a wide range of exhaust compositions, not possible by only controlling the engine, could be achieved. This will improve the possibilities for parameter estimation for the modeling of the DOC.
Journal Article

The Effect of Engine, Axle and Transmission Lubricant, and Operating Conditions on Heavy Duty Diesel Fuel Economy. Part 1: Measurements

2011-08-30
2011-01-2129
It is expected that the world's energy demand will double by 2050, which requires energy-efficient technologies to be readily available. With the increasing number of vehicles on our roads the demand for energy is increasing rapidly, and with this there is an associated increase in CO₂ emissions. Through the careful use of optimized lubricants it is possible to significantly reduce vehicle fuel consumption and hence CO₂. This paper evaluates the effects on fuel economy of high quality, low viscosity heavy-duty diesel engine type lubricants against mainstream type products for all elements of the vehicle driveline. Testing was performed on Shell's driveline test facility for the evaluation of fuel consumption effects due to engine, gearbox and axle oils and the variation with engine operating conditions.
Journal Article

The Effect of Engine, Axle and Transmission Lubricant, and Operating Conditions on Heavy Duty Diesel Fuel Economy: Part 2: Predictions

2011-08-30
2011-01-2130
A predictive model for estimating the fuel saving of “top tier” engine, axle and transmission lubricants (compared to “mainstream” lubricants), in a heavy duty truck, operating on a realistic driving cycle, is described. Simulations have been performed for different truck weights (10, 20 and 40 tonnes) and it was found that the model predicts percentage fuel economy benefits that are of a similar magnitude to those measured in well controlled field trials1. The model predicts the percentage fuel saving from the engine oil should decrease as the vehicle load increases (which is in agreement with field trial results). The percentage fuel saving from the axle and gearbox oils initially decreases with load and then stays more or less constant. This behaviour is due to the detailed way in which axle and gearbox efficiency varies with speed/load and lubricant type.
Technical Paper

Thermally Stable Pt/Rh Catalysts

1997-10-01
972909
The increasing severity in emission standards around the world has been accompanied by the development of more active, durable catalysts. With a view to investigating the effects of high thermal aging on the catalyst performance and structure, the relationships of washcoat composition, washcoat structure, and PGM location with respect to catalyst activity were clarified using a model gas test, as well as physical and chemical characterization methods. The influence of newly developed washcoat components and PGM location on catalyst performance are also demonstrated by engine bench tests. The results obtained in this study indicate the newly developed Pt/Rh catalyst techologies are appropriate for future applications in which the catalyst will be exposed to extremely high temperature and flowrates.
Technical Paper

Ambient Temperature Light-off Aftertreatment System for Meeting ULEV Emission Standards

1998-02-23
980421
It has long been recognized that the key to achieving stringent emission standards such as ULEV is the control of cold-start hydrocarbons. This paper describes a new approach for achieving excellent cold-start hydrocarbon control. The most important component in the system is a catalyst that is highly active at ambient temperature for the exothermic CO oxidation reaction in an exhaust stream under net lean conditions. This catalyst has positive order kinetics with respect to CO for CO oxidation. Thus, as the concentration of CO in the exhaust is increased, the rate of this reaction is increased, resulting in a faster temperature rise over the catalyst.
Technical Paper

Diesel Fuel Desulfurization Filter

2007-04-16
2007-01-1428
The molecular filtration of sulfur components in ultra low sulfur diesel (ULSD) fuel is described. A comprehensive screening of potential sulfur removal chemistries has yielded a sorbent which has the capability to efficiently remove organo-sulfur components in ULSD fuel. This sorbent has been used to treat ULSD fuel on a heavy duty engine equipped with NOx adsorber after-treatment technology and has been shown to lengthen the time between desulfation steps for the NOx adsorber. The fuel properties, cetane number and aromatics content, etc., have not been changed by the removal of the sulfur in the fuel with the exception of the lubricity which is reduced.
Technical Paper

Development of Advanced Metallic Substrate Design for Close Coupled Converter Application

2007-04-16
2007-01-1262
The implementations of the Tier 2 and LEVII emission levels require fast catalyst light-off and fast closed loop control through high-speed engine management. The paper describes the development of innovative catalyst designs. During the development thermal and mechanical boundary conditions were collected and component tests conducted on test rigs to identify the emission and durability performance. The products were evaluated on a Super Imposed Test Setup (SIT) where thermal and mechanical loads are applied to the test piece simultanously and results are compared to accelerated vehicle power train endurance runs. The newly developed light-off catalyst with Perforated Foil Technology (PE) showed superior emission light-off characteristic and robustness.
Technical Paper

Evaluation of API/ILSAC GF-4 Oil Life in Today's US Fleet

2008-06-23
2008-01-1740
Engine technology in passenger vehicles continues to evolve to meet consumer needs, improve fuel efficiency and reduce emissions. Likewise, engine oil classifications and performance requirements have evolved to meet the demands of the latest engine technology. This paper explores the degradation of engine oil quality in service by monitoring the condition of the used oil samples obtained from real-world, non-fleet consumer applications. In a previous study (SAE 2003-01-1957), used oil analysis results were reported for API/ILSAC GF-2 engine oil samples to determine oil degradation trends during service life. These samples were collected from a variety of vehicles, representing different driving conditions and oil brands. Each sample was analyzed to monitor additive depletion, accumulation of contaminants, and change in the physical and chemical properties of the oils. This study is a continuation of the previous work and includes API/ILSAC GF-4 engine oil samples.
Technical Paper

Reduction of NOx in Lean Exhaust by Selective NOx-Recirculation (SNR-Technique) Part I: System and Decomposition Process

1998-10-19
982592
The SNR-technique is a new NOx aftertreatment system for lean burn gasoline and diesel applications. The objective of SNR is NOx removal from lean exhaust gas by NOx adsorption and subsequent selective external recirculation and decomposition of NOx in the combustion process. The SNR-project is composed of two major parts. Firstly the development of NOx adsorbents which are able to store large quantities of NOx in lean exhaust gas, and secondly the NOx decomposition by the combustion process. Emphasis of this paper is the investigation of NOx reduction in the combustion process, including experimental investigation and numerical simulation. The NOx decomposition process has been proven in diesel and lean-burn gasoline engines. Depending on the type of engine NOx-conversion rates up to 90 % have been observed. Regarding the complete SNR-system, including the efficiency of the adsorbing material and the NOx decomposition by the combustion, a NOx removal of more than 50% is achievable.
Technical Paper

Reduction of NOx in Lean Exhaust by Selective NOx-Recirculation (SNR-Technique) Part II: NOx Storage Materials

1998-10-19
982593
Selective NOx recirculation (SNR), involving adsorption, selective external recirculation and decomposition of the NOx by the combustion process, is itself a promising technique to abate NOx emissions. Three types of materials containing Ba: barium aluminate, barium tin perovskite and barium Y-zeolites have been developed to adsorb NOx under lean-burn or Diesel conditions, with or without the presence of S02. All these materials adsorb NO2 selectively (lean-burn conditions), and store it as nitrate/nitrite species. The desorption takes place by decomposition of these species at higher temperatures. Nitrate formation implies also sulfate formation in the presence of SO2 and SO3, while the NO2/SO2 competition governs the poisoning of such catalysts.
Technical Paper

Performance of Different Cell Structure Converters A Total Systems Perspective

1998-10-19
982634
The objective of this effort was to develop an understanding of how different converter substrate cell structures impact tailpipe emissions and pressure drop from a total systems perspective. The cell structures studied were the following: The catalyst technologies utilized were a new technology palladium only catalyst in combination with a palladium/rhodium catalyst. A 4.0-liter, 1997 Jeep Cherokee with a modified calibration was chosen as the test platform for performing the FTP test. The experimental design focused on quantifying emissions performance as a function of converter volume for the different cell structures. The results from this study demonstrate that the 93 square cell/cm2 structure has superior performance versus the 62 square cell/cm2 structure and the 46 triangle cell/cm2 structure when the converter volumes were relatively small. However, as converter volume increases the emissions differences diminish.
Technical Paper

The Effects of Thermal Degradation on the Performance of a NOX Storage/Reduction Catalyst

2009-04-20
2009-01-0631
The performance characteristics of a commercial lean-NOX trap catalyst were evaluated between 200 and 500°C, using H2, CO, and a mixture of both H2 and CO as reductants before and after different high-temperature aging steps, from 600 to 750°C. Tests included NOX reduction efficiency during cycling, NOX storage capacity (NSC), oxygen storage capacity (OSC), and water-gas-shift (WGS) and NO oxidation reaction extents. The WGS reaction extent at 200 and 300°C was negatively affected by thermal degradation, but at 400 and 500°C no significant change was observed. Changes in the extent of NO oxidation did not show a consistent trend as a function of thermal degradation. The total NSC was tested at 200, 350 and 500°C. Little change was observed at 500°C with thermal degradation but a steady decrease was observed at 350°C as the thermal degradation temperature was increased.
Technical Paper

Investigations into NOx Aftertreatment with Urea SCR for Light-Duty Diesel Vehicles

2001-09-24
2001-01-3624
Future US emissions limits are likely to mean a sophisticated nitrogen oxide (NOx) reduction technique is required for all vehicles with a diesel engine, which is likely to be either NOx trap or selective catalytic reduction (SCR) technology. To investigate the potential of SCR for NOx reduction on a light duty vehicle, a current model vehicle (EUII M1 calibration), of inertia weight 1810 kg, was equipped with an urea-based SCR injection system and non-vanadium, non-zeolitic SCR catalysts. To deal with carbon monoxide (CO), hydrocarbon (HC) and volatile organic fraction (VOF), a diesel oxidation catalyst was also incorporated into the system for most tests. Investigations into the effect of placing the oxidation catalyst at different positions in the system, changing the volume of the SCR catalysts, increasing system temperature through road load changes, varying the SCR catalyst composition, and changing the urea injection calibration are discussed.
Technical Paper

Development of Advanced Three-Way Catalysts that Enable Low PGM Loadings for Future Mercosur Emissions Legislation

2002-11-19
2002-01-3551
This paper describes the development of new high performance three-way catalyst (TWC) formulations with improved activity and enhanced thermal stability. These new TWC formulations enable the converter to be fitted closer to the engine and allow this future legislation to be met with catalysts using PGM levels significantly lower than those currently being employed. The performance benefits of these advanced platinum- and palladium-based catalysts are demonstrated on a number of different vehicles after bench-engine ageing.
Technical Paper

FTP and US06 Performance of Advanced High Cell Density Metallic Substrates as a Function of Varying Air/Fuel Modulation

2003-03-03
2003-01-0819
The influence of catalyst volume, cell density and precious metal loading on the catalyst efficiency were investigated to design a low cost catalyst system. In a first experiment the specific loading was kept constant for a 500cpsi and a 900cpsi substrate. In a second experiment the palladium loading was reduced on the 900cpsi substrate and the same PM loading was applied to a 1200cpsi substrate with lower volume. Finally the loading was further reduced for the 1200cpsi substrate. The following parameters were studied after aging: Catalyst performance of standard cell density compared to high cell density technology Light-off performance and catalyst efficiency as a function of Palladium loading and substrate cell density Catalyst efficiency as a function of AFR biasing The performance of the aged catalysts was investigated in a lambda sweep test and in light-off tests at an engine bench.
Technical Paper

Effect of Fuel Detergent on Injector Deposit Formation and Engine Emissions in a Gasoline Direct Injection (GDI) Engine

2017-10-08
2017-01-2247
Gasoline direct injection (GDI) engines have been developed rapidly in recent years, driven by stringent legislative requirements on vehicle fuel efficiency and emissions. However, one challenge facing GDI is the formation of particulate emissions, particularly with the presence of injector tip deposits. The Chinese market features some gasoline fuels that contain no detergent additives and are prone to deposit formation, which can affect engine performance and emissions. The use of detergent additives to mitigate the formation of injector deposits in a GDI engine was investigated in this study by testing a 1.5L turbocharged GDI engine available in the Chinese market. The engine was operated both on base gasoline and on gasoline dosed with detergent additives to evaluate the effect on injector deposit formation and engine performance and emissions.
Technical Paper

Fuel Effects in a Boosted DISI Engine

2011-08-30
2011-01-1985
Due to the recent drive to reduce CO₂ emissions, the turbocharged direct injection spark ignition (turbo DISI) gasoline engine has become increasingly popular. In addition, future turbo DISI engines could incorporate a form of charge dilution (e.g., lean operation or external EGR) to further increase fuel efficiency. Thus, the conditions experienced by the fuel before and during combustion are and will continue to be different from those experienced in naturally aspirated SI engines. This work investigates the effects of fuel properties on a modern and prototype turbo DISI engine, with particular focus on the octane appetite: How relevant are RON and MON in predicting a fuel's anti-knock performance in these modern/future engines? It is found that fuels with high RON and low MON values perform the best, suggesting the current MON requirements in fuel specifications could actually be detrimental.
Technical Paper

Impact of SCR Activity on Soot Regeneration and the Converse Effects of Soot Regeneration on SCR Activity on a Vanadia-SCRF®

2018-04-03
2018-01-0962
The influence of SCR (selective catalytic reduction) activity on soot regeneration was investigated using engine test measurements with and without urea dosing on a vanadia-SCRF®1, also known as a vanadia SCR coated diesel particulate filter (V.SCR-DPF). The extent and rate of passive soot regeneration is significantly reduced in the presence of SCR activity especially at high temperatures (>250 °C). The reduction in soot regeneration is because some of the NO2, which would otherwise react with the soot, is consumed by SCR reactions and consequently the rate of soot regeneration is lower when urea is dosed. The converse effects of soot oxidation on SCR activity were studied separately by analysing steady-state light-off engine measurements with different initial soot loadings on the V.SCR-DPF. The measurements show an increase in NOX conversion with increasing soot loading.
Technical Paper

Effect of a Continuously Regenerating Diesel Particulate Filter on Non-Regulated Emissions and Particle Size Distribution

1998-02-23
980189
The reduction of particulate emissions from diesel engines is one of the most challenging problems associated with exhaust pollution control, second only to the control of NOx from any “lean burn” application. Particulate emissions can be controlled by adjustments to the combustion parameters of a diesel engine but these measures normally result in increased emissions of oxides of nitrogen. Diesel particulate filters (DPFs) hold out the prospect of substantially reducing regulated particulate emissions and the task of actually removing the particles from the exhaust gas has been solved by the development of effective filtration materials. The question of the reliable regeneration of these filters in situ, however, remains a difficult hurdle. Many of the solutions proposed to date suffer from high engineering complexity and/or high energy demand. In addition some have special disadvantages under certain operating conditions.
Technical Paper

A One-Dimensional Model for Square and Octo-Square Asymmetric Particulate Filters with Correct Description of the Channel and Wall Geometry

2018-04-03
2018-01-0951
Asymmetric particulate filters (PF), where the inlet channel is wider than the outlet channel, are commonly used because of their greater capacity for ash. Somewhat surprisingly, very few models for asymmetric PFs have been published and none of these gives a correct/detailed description of the geometry. For example, octahedral channels may be treated as if they were square or the tapering walls between the inlet and outlet channels treated as if they were rectangular in cross section. Alternatively, the equations may be presented in generic form in terms of channel cross-sectional areas and perimeters, but without giving any indication of how to calculate these. This paper aims to address these deficiencies with a model that correctly describes the geometry of square and octo-square asymmetric PFs. Expressions for the solid fraction of the PF (which affects thermal mass) and channel cross section and perimeter (both when clean and soot/ash loaded) are presented.
X