Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Thermal Analysis of Urea Tank Solution Warm Up for Selective Catalytic Reduction (SCR)

2009-04-20
2009-01-0971
Due to the stringent requirements to reduce the tail pipe emissions of NOx, Selective Catalytic Reduction (SCR) systems are used to remove NOx using ammonia. When a urea solution is injected into the exhaust system, urea will undergo hydrolysis and decomposition reaction that produces ammonia. At the catalyst surface, ammonia will react with the exhaust gases to convert NOx into nitrogen, N2 and water, H2O. One of the challenging problems is to make sure the urea solution is available for the SCR system at cold start conditions. At extreme cold temperatures, the urea solution will begin to freeze at −12°C. At the start up of a vehicle under such low ambient temperatures, a heating system is used to provide the heat required for melting the frozen urea. Therefore, there will be a time lag between the vehicle start up and the availability of urea solution to the SCR system.
Journal Article

Applying Virtual Statistical Modeling for Vehicle Dynamics

2010-04-12
2010-01-0019
Dimensional variation simulation is a computer aided engineering (CAE) method that analyzes the statistical efforts of the component variation to the quality of the final assembly. The traditional tolerance analysis method and commercial CAE software are often based on the assumptions of the rigid part assembly. However, the vehicle functional attributes, such as, ride and handling, NVH, durability and reliability, require understanding the assembly quality under various dynamic conditions while achieving vehicle dimensional clearance targets. This paper presents the methods in evaluating and analyzing the impacts of the assembly variations for the vehicle dynamic performance. Basic linear tolerance stack method and advanced study that applies various CAE tools for the virtual quality analysis in the product and process design will be discussed.
Journal Article

CAE Applications and Techniques used in Calculating the Snaps Insertions and Retentions Efforts in Automotive Trims

2014-04-01
2014-01-1032
A snap-fit is a form-fitting joint, which is used to assemble plastic parts together. Snap-fits are available in different forms like a projecting clip, thicker section or legs in one part, and it is assembled to another part through holes, undercuts or recesses. The main function of the snap-fit is to hold the mating components, and it should withstand the vibration and durability loads. Snap-fits are easy to assemble, and should not fail during the assembling process. Based on the design, these joints may be separable or non-separable. The non- separable joints will withstand the loads till failure, while separable joints will withstand only for the design load. The insertion and the retention force calculation for the snaps are very essential for snap-fit design. The finite element analysis plays a very important role in finding the insertion and the retention force values, and also to predict the failure of the snaps and the mating components during this process.
Technical Paper

Human Perception of Seat Vibration Quality Pilot Study

2021-08-31
2021-01-1068
Driving comfort and automotive product quality are strongly associated with the vibration that is transmitted to the occupants of a vehicle at the points of contact to the human body, including the seat, steering wheel, and pedals. Of these three contact locations, the seats have the most general importance, as all occupants of a vehicle experience seat vibration. Particularly relevant to driving comfort is the way in which vehicle occupants perceive seat vibration, which may be different than expected considering sensor measured vibration levels. Much of the interest in seat vibration has been focused on internal combustion engine powertrain vibration, especially idle vibration. However, electrification of vehicles changes the focus from low frequency idle vibration to higher frequency vibration sources.
Journal Article

Connected Car Architecture and Virtualization

2016-04-05
2016-01-0081
Connectivity has become an essential need for daily device users. With the car projected to be the “ultimate mobile device”, connectivity modules will eventually be mainstream in every car. Network providers are expanding their infrastructure and technology to accommodate the connected cars. Besides making voice and emergency calls the connected car will be sharing data with telematics service providers, back end systems and other vehicles. This trend will increase vehicle modules, complexity, entry points and vulnerabilities. This paper will present the current connected car architectures. The paper will present current architectural issues of the connected car and its vulnerabilities. The paper will present a new proposed architecture for the future connected car that enhances efficiency and security.
Technical Paper

Robust Sensor Fused Object Detection Using Convolutional Neural Networks for Autonomous Vehicles

2020-04-14
2020-01-0100
Environmental perception is considered an essential module for autonomous driving and Advanced Driver Assistance System (ADAS). Recently, deep Convolutional Neural Networks (CNNs) have become the State-of-the-Art with many different architectures in various object detection problems. However, performances of existing CNNs have been dropping when detecting small objects at a large distance. To deploy any environmental perception system in real world applications, it is important that the system achieves high accuracy regardless of the size of the object, distance, and weather conditions. In this paper, a robust sensor fused object detection system is proposed by utilizing the advantages of both vision and automotive radar sensors. The proposed system consists of three major components: 1) the Coordinate Conversion module, 2) Multi level-Sensor Fusion Detection (MSFD) system, and 3) Temporal Correlation filtering module.
Technical Paper

A Forward Collision Warning System Using Deep Reinforcement Learning

2020-04-14
2020-01-0138
Forward collision warning is one of the most challenging concerns in the safety of autonomous vehicles. A cooperation between many sensors such as LIDAR, Radar and camera helps to enhance the safety. Apart from the importance of having a reliable object detector, the safety system should have requisite capabilities to make reasonable decisions in the moment. In this work, we concentrate on detecting front vehicles of autonomous cars using a monocular camera, beyond only a detection method. In fact, we devise a solution based on a cooperation between a deep object detector and a reinforcement learning method to provide forward collision warning signals. The proposed method models the relation between acceleration, distance and collision point using the area of the bounding box related to the front vehicle. An agent of learning automata as a reinforcement learning method interacts with the environment to learn how to behave in eclectic hazardous situations.
Technical Paper

Autonomous Lane Change Control Using Proportional-Integral-Derivative Controller and Bicycle Model

2020-04-14
2020-01-0215
As advanced vehicle controls and autonomy become mainstream in the automotive industry, the need to employ traditional mathematical models and control strategies arises for the purpose of simulating autonomous vehicle handling maneuvers. This study focuses on lane change maneuvers for autonomous vehicles driving at low speeds. The lane change methodology uses PID (Proportional-Integral-Derivative) controller to command the steering wheel angle, based on the yaw motion and lateral displacement of the vehicle. The controller was developed and tested on a bicycle model of an electric vehicle (a Chevrolet Bolt 2017), with the implementation done in MATLAB/Simulink. This simple mathematical model was chosen in order to limit computational demands, while still being capable of simulating a smooth lane change maneuver under the direction of the car’s mission planning module at modest levels of lateral acceleration.
Technical Paper

Design and Analysis of Kettering University’s New Proving Ground, the GM Mobility Research Center

2020-04-14
2020-01-0213
Rapid changes in the automotive industry, including the growth of advanced vehicle controls and autonomy, are driving the need for more dedicated proving ground spaces where these systems can be developed safely. To address this need, Kettering University has created the GM Mobility Research Center, a 21-acre proving ground located in Flint, Michigan at the former “Chevy in the Hole” factory location. Construction of a proving ground on this site represents a beneficial redevelopment of an industrial brownfield, as well as a significant expansion of the test facilities available at the campus of Kettering University. Test facilities on the site include a road course and a test pad, along with a building that has garage space, a conference room, and an indoor observation platform. All of these facilities are available to the students and faculty of Kettering University, along with their industrial partners, for the purpose of engaging in advanced transportation research and education.
Technical Paper

Structural Analysis and Design Modification of Seat Rail Structures in Various Operating Conditions

2020-04-14
2020-01-1101
This paper is based on, and in continuation of the work previously published in ASEE NCS Conference held in Grand Rapids, MI [1]. Automotive seating rail structures are one of the key components in the automotive industry because they carry the entire weight of passenger and they hold the structure for seating foams and other assembled key components such as side airbag and seatbelt systems. The entire seating is supported firmly and attached to the bottom bodywork of the vehicle through the linkage assembly called the seat rails. Seat rails are adjustable in their longitudinal motion which plays an important role in giving the passengers enough leg room to make them feel comfortable. Therefore, seat rails under the various operating conditions, should be able to withstand the weight of the passenger along with the other assembled parts as mentioned above. Also, functional requirements such as crash safety is very important to avoid or to minimize injuries to the occupants.
Technical Paper

A Robust Failure Proof Driver Drowsiness Detection System Estimating Blink and Yawn

2020-04-14
2020-01-1030
The fatal automobile accidents can be attributed to fatigued and distracted driving by drivers. Driver Monitoring Systems alert the distracted drivers by raising alarms. Most of the image based driver drowsiness detection systems face the challenge of failure proof performance in real time applications. Failure in face detection and other important part (eyes, nose and mouth) detections in real time cause the system to skip detections of blinking and yawning in few frames. In this paper, a real time robust and failure proof driver drowsiness detection system is proposed. The proposed system deploys a set of detection systems to detect face, blinking and yawning sequentially. A robust Multi-Task Convolutional Neural Network (MTCNN) with the capability of face alignment is used for face detection. This system attained 97% recall in the real time driving dataset collected. The detected face is passed on to ensemble of regression trees to detect the 68 facial landmarks.
Technical Paper

Source Noise Isolation during Electric Vehicle Pass-By Noise Testing Using Multiple Coherence

2020-04-14
2020-01-1268
Due to the nearly silent operation of an electric motor, it is difficult for pedestrians to detect an approaching electric vehicle. To address this safety concern, the National Highway Traffic Safety Administration issued the Federal Motor Vehicle Safety Standard (FMVSS) No. 141, “Minimum Sound Requirements for Hybrid and Electric Vehicles”. This FMVSS 141 standard requires the measurement of electric vehicle noise according to certain test protocols; however, performing these tests can be difficult since inconsistent results can occur in the presence of transient background noise. Methods to isolate background noise during static sound measurements have already been established, though these methods are not directly applicable to a pass-by noise test where neither the background noise nor the vehicle itself as it travels past the microphone produce stationary sound signals.
Journal Article

Developing Safety Standards for FCVs and Hydrogen Vehicles

2009-04-20
2009-01-0011
The SAE Fuel Cell Vehicle (FCV) Safety Working Group has been addressing FCV safety for over 9 years. The initial document, SAE J2578, was published in 2002. SAE J2578 has been valuable as a Recommended Practice for FCV development with regard to the identification of hazards and the definition of countermeasures to mitigate these hazards such that FCVs can be operated in the same manner as conventional gasoline internal combustion engine (ICE)-powered vehicles. SAE J2578 is currently being revised so that it will continue to be relevant as FCV development moves forward. For example, test methods were refined to verify the acceptability of hydrogen discharges when parking in residential garages and commercial structures and after crash tests prescribed by government regulation, and electrical requirements were updated to reflect the complexities of modern electrical circuits which interconnect both AC and DC circuits to improve efficiency and reduce cost.
Journal Article

The Effects of Detailed Tire Geometry on Automobile Aerodynamics - a CFD Correlation Study in Static Conditions

2009-04-20
2009-01-0777
A correlation study was performed between static wind tunnel testing and computational fluid dynamics (CFD) for a small hatchback vehicle, with the intent of evaluating a variety of different wheel and tire designs for aerodynamic forces. This was the first step of a broader study to develop a tool for assessing wheel and tire designs with real world (rolling road) conditions. It was discovered that better correlation could be achieved when actual tire scan data was used versus traditional smooth (CAD) tire geometry. This paper details the process involved in achieving the best correlation of the CFD prediction with experimental results, and describes the steps taken to include the most accurate geometry possible, including photogrammetry scans of an actual tire that was tested, and the level of meshing detail utilized to capture the fluid effects of the tire detail.
Journal Article

Steady and Transient CFD Approach for Port Optimization

2008-04-14
2008-01-1430
The intake and exhaust port design plays a substantial role in performance of combustion systems. The port design determines the volumetric efficiency and in-cylinder charge motion of the spark-ignited engine which influences the thermodynamic properties directly related to the power output, emissions, fuel consumption and NVH properties. Thus intake port has to be appropriately designed to fulfill the required charge motion and high flow performance. While turbulence intensity and air-mixture quality affect dilution tolerance and fuel economy as a result, breathing ability affects wide open throttle performance. Traditional approaches require experimental techniques to reach a target balance between the charge motion and breathing capacity. Such techniques do not necessarily result in an optimized solution.
Journal Article

Microstructural Effects on Residual Stress, Retained Austenite, and Case Depth of Carburized Automotive Steels

2008-04-14
2008-01-1422
SAE 8620 and other steels are typically used in the carburized condition for powertrain applications in the automotive industry, i.e., differential ring gears, camshafts, and transmission gears. Although current recommended carburizing practice involves normalizing the steel prior to carburizing, elimination of this normalizing treatment could lead to significant cost reductions. This research examines whether the normalizing process prior to carburizing could be eliminated without negatively affecting part performance. This study focused on the effects of the initial microstructure on the residual stress, retained austenite, and effective case depths of carburized SAE 8620 and PS-18 steels.
Journal Article

Distortion and Residual Stresses in Nitrocarburized and Carbonitrided SAE 1010 Plain Carbon Steel

2008-04-14
2008-01-1421
The focus of this study was to determine the residual stress and retained austenite profiles for carbonitrided and nitrocarburized SAE 1010 plain carbon steel and to relate these profiles to one another and to the distortion resulting from heat treatment. Navy C-ring specimens were used for the purpose of this study and X-ray diffraction techniques were used to measure both residual stress and retained austenite. The findings from this research are then applied to a manufacturing application involving the surface hardening of a thin shelled, plain carbon steel automotive component.
Journal Article

An Evaluation of Residual Gas Fraction Measurement Techniques in a High Degree of Freedom Spark Ignition Engine

2008-04-14
2008-01-0094
Stringent fuel economy and emissions regulations have driven development of new mixture preparation technologies and increased spark-ignition engine complexity. Additional degrees of freedom, brought about by devices such as cam phasers and charge motion control valves, enable greater range and flexibility in engine control. This permits significant gains in fuel efficiency and emission control, but creates challenges related to proper engine control and calibration techniques. Accurate experimental characterization of high degree of freedom engines is essential for addressing the controls challenge. In particular, this paper focuses on the evaluation of three experimental residual gas fraction measurement techniques for use in a spark ignition engine equipped with dual-independent variable camshaft phasing (VVT).
Journal Article

Gasoline Fuel Injector Spray Measurement and Characterization - A New SAE J2715 Recommended Practice

2008-04-14
2008-01-1068
With increasingly stringent emissions regulations and concurrent requirements for enhanced engine thermal efficiency, a comprehensive characterization of the automotive gasoline fuel spray has become essential. The acquisition of accurate and repeatable spray data is even more critical when a combustion strategy such as gasoline direct injection is to be utilized. Without industry-wide standardization of testing procedures, large variablilities have been experienced in attempts to verify the claimed spray performance values for the Sauter mean diameter, Dv90, tip penetration and cone angle of many types of fuel sprays. A new SAE Recommended Practice document, J2715, has been developed by the SAE Gasoline Fuel Injection Standards Committee (GFISC) and is now available for the measurement and characterization of the fuel sprays from both gasoline direct injection and port fuel injection injectors.
Journal Article

Effect of Operational Testing and Trim Manufacturing Process Variation on Head Injury Criterion in FMVSS 201 Tests

2008-04-14
2008-01-1218
This paper analyzes the difference in impact response of the forehead of the Hybrid III and THOR-NT dummies in free motion headform tests when a dummy strikes the interior trim of a vehicle. Hybrid III dummy head is currently used in FMVSS201 tests. THOR-NT dummy head has been in development to replace Hybrid III head. The impact response of the forehead of both the Hybrid III dummy and THOR dummy was designed to the same human surrogate data. Therefore, when the forehead of either dummy is impacted with the same initial conditions, the acceleration response and consequently the head Injury criterion (HIC) should be similar. A number of manufacturing variables can affect the impacted interior trim panels. This work evaluates the effect of process variation on the response in the form of Head Injury Criterion (HIC).
X