Refine Your Search

Topic

Author

Search Results

Journal Article

Real-Time Optimal Energy Management of Heavy Duty Hybrid Electric Vehicles

2013-04-08
2013-01-1748
The performance of energy flow management strategies is essential for the success of hybrid electric vehicles (HEVs), which are considered amongst the most promising solutions for improving fuel economy as well as reducing exhaust emissions. The heavy duty HEVs engaged in cycles characterized by start-stop configuration has attracted widely interests, especially in off-road applications. In this paper, a fuzzy equivalent consumption minimization strategy (F-ECMS) is proposed as an intelligent real-time energy management solution for heavy duty HEVs. The online optimization problem is formulated as minimizing a cost function, in terms of weighted fuel power and electrical power. A fuzzy rule-based approach is applied on the weight tuning within the cost function, with respect to the variations of the battery state-of-charge (SOC) and elapsed time.
Journal Article

An Objective Measure for Automotive Surface Contamination

2018-04-03
2018-01-0727
Surface contamination, or soiling, of the exterior of road vehicles can be unsightly, can reduce visibility and customer satisfaction, and, with the increasing application of surface-mounted sensors, can degrade the performance of advanced driver-assistance systems. Experimental methods of evaluating surface contamination are increasingly used in the product development process, but the results are generally subjective. The use of computational methods for predicting contamination makes objective measures possible, but comparable data from experiment is an important validation requirement. This article describes the development of an objective measure of surface contamination arising during experiments. A series of controlled experiments using ultraviolet (UV) dye-doped water are conducted to develop a robust methodology. This process is then applied to a simplified contamination test.
Journal Article

A Fully Coupled, 6 Degree-of-Freedom, Aerodynamic and Vehicle Handling Crosswind Simulation using the DrivAer Model

2016-04-05
2016-01-1601
In a real-world environment, a vehicle on the road is subjected to a range of flow yaw angles, the most severe of which can impact handling and stability. A fully coupled, six degrees-of-freedom CFD and vehicle handling simulation has modelled the complete closed loop system. Varying flow yaw angles are introduced via time dependent boundary conditions and aerodynamic loads predicted, whilst a handling model running simultaneously calculates the resulting vehicle response. Updates to the vehicle position and orientation within the CFD simulation are achieved using the overset grid method. Using this approach, a crosswind simulation that follows the parameters of ISO 12021:2010 (Sensitivity to lateral wind - Open-loop test method using wind generator input), was performed using the fastback variant of the DrivAer model. Fully coupled aerodynamic and vehicle response was compared to that obtained using the simplified quasi-steady and unsteady, one way coupled method.
Journal Article

Design and Optimisation of the Propulsion Control Strategy for a Pneumatic Hybrid City Bus

2016-04-05
2016-01-1175
A control strategy has been designed for a city bus equipped with a pneumatic hybrid propulsion system. The control system design is based on the precise management of energy flows during both energy storage and regeneration. Energy recovered from the braking process is stored in the form of compressed air that is redeployed for engine start and to supplement the engine air supply during vehicle acceleration. Operation modes are changed dynamically and the energy distribution is controlled to realize three principal functions: Stop-Start, Boost and Regenerative Braking. A forward facing simulation model facilitates an analysis of the vehicle dynamic performance, engine transient response, fuel economy and energy usage.
Journal Article

A Modal-Based Derivation of Transient Pressure Distribution Along the Tyre-Road Contact

2009-04-20
2009-01-0457
The two-dimensional, frictional tyre-road contact interaction is investigated. A transient contact algorithm is developed, consisting of an analytical belt model, a non linear sidewall structure and a discretized viscoelastic tread foundation. The relationship between the magnitude/shape of the predicted two-dimensional pressure distribution and the corresponding belt deformation is identified. The effect of vertical load and the role of sidewall non linearity are highlighted. The modal expansion/reduction method is proposed for the increase of the computational efficiency and the effect of the degree of reduction on the simulation accuracy is presented. The qualitative results are physically explained through the participation of certain modes in the equilibrium solution, offering directions for the application of the modal reduction method in shear force oriented tyre models.
Journal Article

Crankcase Sampling of PM from a Fired and Motored Compression Ignition Engine

2011-09-11
2011-24-0209
Crankcase emissions are a complex mixture of combustion products and aerosol generated from lubrication oil. The crankcase emissions contribute substantially to the total particulate matter (PM) emitted from an engine. Environment legislation demands that either the combustion and crankcase emissions are combined to give a total measurement, or the crankcase gases are re-circulated back into the engine. There is a lack of understanding regarding the physical processes that generate crankcase aerosols, with a paucity of information on the size/mass concentrations of particles present in the crankcase. In this study the particulate matter crankcase emissions were measured from a fired and motored 4-cylinder compression ignition engine at a range of speeds and crankcase locations.
Journal Article

An Investigation into the Wake Structure of Square Back Vehicles and the Effect of Structure Modification on Resultant Vehicle Forces

2011-06-09
2011-37-0015
A large contribution to the aerodynamic drag of a vehicle (30%(1) or more depending on vehicle shape) arises from the low base pressure in the wake region, especially on square-back configurations. A degree of base pressure recovery can be achieved through careful shape optimization, but the flow structures and mechanisms within the wake that cause these base pressure changes are not well understood. A more complete understanding of these mechanisms may provide opportunities for further drag reductions from both passive shape changes and in the future through the use of active flow control technologies. In this work surprisingly large changes in drag and lift coefficients of a square-back style vehicle have been measured as a result of physically small passive modifications. Tests were performed at quarter scale using a simplified vehicle model (Windsor Model) and at full scale using an MPV. The full scale vehicle was tested with and without a flat floor.
Journal Article

Aerodynamic Drag Reduction on a Simple Car-Like Shape with Rear Upper Body Taper

2013-04-08
2013-01-0462
Various techniques to reduce the aerodynamic drag of bluff bodies through the mechanism of base pressure recovery have been investigated. These include, for example, boat-tailing, base cavities and base bleed. In this study a simple body representing a car shape is modified to include tapering of the rear upper body on both roof and sides. The effects of taper angle and taper length on drag and lift characteristics are investigated. It is shown that a significant drag reduction can be obtained with moderate taper angles. An unexpected feature is a drag rise at a particular taper length. Pressure data obtained on the rear surfaces and some wake flow visualisation using PIV are presented.
Journal Article

Insights into Cold-Start DISI Combustion in an Optical Engine Operating at −7°C

2013-04-08
2013-01-1309
Particulate Matter (PM) emissions reduction is an imminent challenge for Direct Injection Spark Ignition (DISI) engine designers due to the introduction of Particulate Number (PN) standards in the proposed Euro 6 emissions legislation aimed at delivering the next phase of air quality improvements. An understanding of how the formation of combustion-derived nanoparticulates in engines is affected by the engine operating temperature is important for air quality improvement and will influence future engine design and control strategies. This investigation has examined the effect on combustion and PM formation when reducing the engine operating temperature to -7°C. A DISI single-cylinder optical research engine was modified to simulate a range of operating temperatures down to the proposed -7°C.
Technical Paper

Comparison between Unthrottled, Single and Two-valve Induction Strategies Utilising Direct Gasoline Injection: Emissions, Heat-release and Fuel Consumption Analysis

2008-06-23
2008-01-1626
For a spark-ignition engine, the parasitic loss suffered as a result of conventional throttling has long been recognised as a major reason for poor part-load fuel efficiency. While lean, stratified charge, operation addresses this issue, exhaust gas aftertreatment is more challenging compared with homogeneous operation and three-way catalyst after-treatment. This paper adopts a different approach: homogeneous charge direct injection (DI) operation with variable valve actuations which reduce throttling losses. In particular, low-lift and early inlet valve closing (EIVC) strategies are investigated. Results from a thermodynamic single cylinder engine are presented that quantify the effect of two low-lift camshafts and one standard high-lift camshaft operating EIVC strategies at four engine running conditions; both, two- and single-inlet valve operation were investigated. Tests were conducted for both port and DI fuelling, under stoichiometric conditions.
Technical Paper

The Effect of Free Stream Turbulence on A-pillar Airflow

2009-04-20
2009-01-0003
Various studies have shown that the level of wind noise experienced inside cars on the road in unsteady conditions can be substantially different from that measured in wind tunnel tests conducted using a low turbulence facility. In this paper a simple geometric body representing the cabin of a passenger car has been used to investigate the effects of free stream turbulence, (FST), on the A-pillar vortex flowfield and the side glass pressure distribution. Beneath the A-pillar vortex, both mean and dynamic pressures are increased by FST. The unsteady pressure can be associated with wind noise and the flow visualization shows the peak unsteadiness is related to the separation of the secondary vortex.
Technical Paper

Prediction of NOx Emissions of a Heavy Duty Diesel Engine with a NLARX Model

2009-11-02
2009-01-2796
This work describes the application of Non-Linear Autoregressive Models with Exogenous Inputs (NLARX) in order to predict the NOx emissions of heavy-duty diesel engines. Two experiments are presented: 1.) a Non-Road-Transient-Cycle (NRTC) 2.) a composition of different engine operation modes and different engine calibrations. Data sets are pre-processed by normalization and re-arranged into training and validation sets. The chosen model is taken from the MATLAB Neural Network Toolbox using the algorithms provided. It is teacher forced trained and then validated. Training results show recognizable performance. However, the validation shows the potential of the chosen method.
Technical Paper

Development of a Validated CFD Process for the Analysis of Inlet Manifold Flows with EGR

2002-03-04
2002-01-0071
Exhaust Gas Recirculation (EGR) is one of several technologies that are being investigated to deliver future legislative emissions targets for diesel engines. Its application requires a detailed understanding of the thermo-fluidic processes within the engine's air system. A validated Computational Fluid Dynamics (CFD) process is one way of providing this understanding. This paper describes a CFD process to analyse unsteady manifold flows and mixing fields in the presence of realistic levels of EGR. The validation methodology was drawn from the American Institute of Aeronautics and Astronautics (AIAA) and divides the problem into smaller elemental problems. Detailed knowledge about these elemental problems is easily attainable, reducing the requirement for a large number of complex validation runs. The final validated process was compared to flow visualization and particle image velocimetry (PIV) data collected from a motored engine.
Technical Paper

Human Factors Issues in the Application of a Novel Process Description Environment for Machine Design and Control Developed under the Foresight Vehicle Programme

2002-03-04
2002-01-0466
In the globalization of the automotive businesses, manufacturing companies and their suppliers are forced to distribute the various lifecycle phases in different geographical locations. Misunderstandings arising from the variety of personnel involved, each with different requirements, backgrounds, roles, cultures and skills for example can result in increased cost and development time. To enable collaborating companies to have a common platform for interaction, the COMPANION project at Loughborough University has been undertaken to develop a common model-based environment for manufacturing automotive engines. Through the use of this environment, the stakeholders will be able to “visualize” consistently the evolution of automated systems at every lifecycle stage i.e. requirements definition, specification, design, analysis, build, evaluation, maintenance, diagnostics and recycle.
Technical Paper

Improved Thermoelectric Generator Performance Using High Temperature Thermoelectric Materials

2017-03-28
2017-01-0121
Thermoelectric generator (TEG) has received more and more attention in its application in the harvesting of waste thermal energy in automotive engines. Even though the commercial Bismuth Telluride thermoelectric material only have 5% efficiency and 250°C hot side temperature limit, it is possible to generate peak 1kW electrical energy from a heavy-duty engine. If being equipped with 500W TEG, a passenger car has potential to save more than 2% fuel consumption and hence CO2 emission reduction. TEG has advantages of compact and motionless parts over other thermal harvest technologies such as Organic Rankine Cycle (ORC) and Turbo-Compound (TC). Intense research works are being carried on improving the thermal efficiency of the thermoelectric materials and increasing the hot side temperature limit. Future thermoelectric modules are expected to have 10% to 20% efficiency and over 500°C hot side temperature limit.
Technical Paper

Robust Methodology for Fast Crank Angle Based Temperature Measurement

2016-04-05
2016-01-1072
The paper presents a measurement methodology which combines a fine-wire thermocouple with input reconstruction in order to measure crank angle resolved temperature in an engine air-intake system. Thermocouples that are of practical use in engine experiments tend to have a large time constant which affects measurement accuracy during rapid temperature transients. Input reconstruction methods have previously been applied to thermocouples but have not been specifically used in combination with an ultra-thin uninsulated wire thermocouple to investigate cyclic intake temperature behavior. Accurate measurement results are of interest to improve the validity of many crank-angle resolved engine models. An unshielded thermocouple sensor has been developed which is rigid enough to withstand the aerodynamic forces of the intake air.
Technical Paper

A Parallel Hybrid Drive System for Small Vehicles: Architecture and Control Systems

2016-04-05
2016-01-1170
The TC48 project is developing a state-of-the-art, exceptionally low cost, 48V Plug-in hybrid electric (PHEV) demonstration drivetrain suitable for electrically powered urban driving, hybrid operation, and internal combustion engine powered high speed motoring. This paper explains the motivation for the project, and presents the layout options considered and the rationale by which these were reduced. The vehicle simulation model used to evaluate the layout options is described and discussed. The modelling work was used in order to support and justify the design choices made. The design of the vehicle's control systems is discussed, presenting simulation results. The physical embodiment of the design is not reported in this paper. The paper describes analysis of small vehicles in the marketplace, including aspects of range and cost, leading to the justification for the specification of the TC48 system.
Technical Paper

The Position Control of a Gasoline Engine during Shutdown

2017-03-28
2017-01-1630
Since the first stop-start system introduced in 1983, more and more vehicles have been equipped with this kind of automatic engine control system. Recently, it was found that there is strong correlation between engine resting position and the subsequent engine start time. The utilization of the synchronization time working from a required engine stop position prior the engine start request was shown to reduce start times. Hence the position control of an engine during shutdown becomes more significant. A naturally aspirated engine was modelled using the GT-Suite modelling environment to facilitate the development of position controllers using Simulink ®. The use of respectively the throttle and a belt mounted motor generator to provide a control input was considered. Proportional-Integral-Differential (PID), sliding mode and deadbeat control strategies were each used in this study.
Technical Paper

Tribodynamics of a New De-Clutch Mechanism Aimed for Engine Downsizing in Off-Road Heavy-Duty Vehicles

2017-06-05
2017-01-1835
Clutches are commonly utilised in passenger type and off-road heavy-duty vehicles to disconnect the engine from the driveline and other parasitic loads. In off-road heavy-duty vehicles, along with fuel efficiency start-up functionality at extended ambient conditions, such as low temperature and intake absolute pressure are crucial. Off-road vehicle manufacturers can overcome the parasitic loads in these conditions by oversizing the engine. Caterpillar Inc. as the pioneer in off-road technology has developed a novel clutch design to allow for engine downsizing while vehicle’s performance is not affected. The tribological behaviour of the clutch will be crucial to start engagement promptly and reach the maximum clutch capacity in the shortest possible time and smoothest way in terms of dynamics. A multi-body dynamics model of the clutch system is developed in MSC ADAMS. The flywheel is introducing the same speed and torque as the engine (represents the engine input to the clutch).
Technical Paper

Mode Transition Optimisation for Variable Displacement Engines

2016-04-05
2016-01-0619
The deactivation of one or more cylinders in internal combustion engines has long been established in literature as a means of reducing engine pumping losses and thereby improving brake specific fuel consumption. As down-sizing and down-speeding of modern engines becomes more extreme, drivability issues associated with mode transition become more acute and need to be managed within a suitable calibration framework. This paper presents methodology by which a calibration may be deduced for optimal mode-transitioning in respect of minimising the torque disturbance as cylinders are deactivated and re-activated. At the outset of this study a physics based engine model is used to investigate the key parameters that influence the transition. Having understood these, experiments are designed to establish the level of mode transition disturbance using quantitative statistical indicators such that the cost function may be defined and an optimisation undertaken.
X