Refine Your Search

Topic

Author

Search Results

Journal Article

A Normally Aspirated Spark Initiated Combustion System Capable of High Load, High Efficiency and Near Zero NOx Emissions in a Modern Vehicle Powertrain

2010-10-25
2010-01-2196
Turbulent Jet Ignition is an advanced spark-initiated pre-chamber combustion system for an otherwise standard spark ignition engine found in current on-road vehicles. This next-generation pre-chamber design simply replaces the spark plug in a conventional spark ignition engine. Turbulent Jet Ignition enables very fast burn rates due to the ignition system producing multiple, widely distributed ignition sites, which consume the main charge rapidly. This high energy ignition system results from the partially combusted (reacting) prechamber products initiating main chamber combustion. The fast burn rates allow for increased levels of dilution (lean burn and/or EGR) when compared to conventional spark ignition combustion, with dilution levels being comparable to other low temperature combustion technologies (HCCI) without the complex control drawbacks.
Journal Article

Flame Kernel Development for a Spark Initiated Pre-Chamber Combustion System Capable of High Load, High Efficiency and Near Zero NOx Emissions

2010-10-25
2010-01-2260
Turbulent Jet Ignition is an advanced spark-initiated pre-chamber combustion system for an otherwise standard spark ignition engine found in current on-road vehicles. This next-generation pre-chamber design simply replaces the spark plug in a conventional spark ignition engine. Turbulent Jet Ignition enables very fast burn rates due to the ignition system producing multiple, widely distributed ignition sites, which consume the main charge rapidly. This high energy ignition system results from the partially combusted (reacting) pre-chamber products initiating main chamber combustion. The fast burn rates allow for increased levels of dilution (lean burn and/or EGR) when compared to conventional spark ignition combustion, with dilution levels being comparable to other low temperature combustion technologies (HCCI) without the complex control drawbacks.
Journal Article

A Turbulent Jet Ignition Pre-Chamber Combustion System for Large Fuel Economy Improvements in a Modern Vehicle Powertrain

2010-05-05
2010-01-1457
Turbulent Jet Ignition is an advanced pre-chamber initiated combustion system for an otherwise standard spark ignition engine found in current on-road vehicles. This next-generation pre-chamber design overcomes previous packaging obstacles by simply replacing the spark plug in a modern four-valve, pent roof spark ignition engine. Turbulent Jet Ignition enables very fast burn rates due to the ignition system producing multiple, distributed ignition sites, which consume the main charge rapidly and with minimal combustion variability. The fast burn rates allow for increased levels of dilution (lean burn and/or EGR) when compared to conventional spark ignition combustion, with dilution levels being comparable to other low temperature combustion technologies (homogeneous charge compression ignition - HCCI) without the complex control drawbacks.
Journal Article

Ignition Energy Development for a Spark Initiated Combustion System Capable of High Load, High Efficiency and Near Zero NOx Emissions

2010-09-28
2010-32-0088
Turbulent Jet Ignition is an advanced pre-chamber initiated combustion system for an otherwise standard spark ignition engine found in current on-road vehicles. This type of ignition enables very fast burn rates due to the ignition system producing multiple, widely distributed ignition sites, which consume the main charge rapidly. This high-energy ignition system results from the partially combusted (reacting) pre-chamber products initiating main chamber combustion. The fast burn rates allow for increased levels of dilution (lean burn and/or EGR) when compared to conventional spark ignition combustion, with dilution levels being comparable to other low-temperature combustion technologies (HCCI) without the complex control drawbacks. Previous Turbulent Jet Ignition experimental results have highlighted peak net indicated thermal efficiency values of 42% in a standard modern engine platform.
Journal Article

Combustion Visualization, Performance, and CFD Modeling of a Pre-Chamber Turbulent Jet Ignition System in a Rapid Compression Machine

2015-04-14
2015-01-0779
Turbulent jet ignition is a pre-chamber ignition enhancement method that produces a distributed ignition source through the use of a chemically active turbulent jet which can replace the spark plug in a conventional spark ignition engine. In this paper combustion visualization and characterization was performed for the combustion of a premixed propane/air mixture initiated by a pre-chamber turbulent jet ignition system with no auxiliary fuel injection, in a rapid compression machine. Three different single orifice nozzles with orifice diameters of 1.5 mm, 2 mm, and 3 mm were tested for the turbulent jet igniter pre-chamber over a range of air to fuel ratios. The performance of the turbulent jet ignition system based on nozzle orifice diameter was characterized by considering both the 0-10 % and the 10-90 % burn durations of the pressure rise due to combustion.
Technical Paper

Impact of CO2 Dilution on Ignition Delay Times of Full Blend Gasolines in a Rapid Compression Machine

2021-09-21
2021-01-1199
Autoignition delay times of two full blend gasoline fuels (high and low RON) were explored in a rapid compression machine. CO2 dilution by mass was introduced at 0%, 15%, and 30% levels with the O2:N2 mole ratio fixed at 1:3.76. This dilution strategy is used to represent exhaust gas recirculation (EGR) substitution in spark ignition (SI) engines by using CO2 as a surrogate for major EGR constituents(N2, CO2, H2O). Experiments were conducted over the temperature range of 650K-900K and at 10 bar and 20 bar compressed pressure conditions for equivalence ratios of (Φ =) 0.6-1.3. The full blend fuels were admitted directly into the combustion chamber for mixture preparation using the direct test chamber (DTC) approach. CO2 addition retarded the autoignition times for the fuels studied here. The retarding effect of the CO2 dilution was more pronounced in the NTC region when compared to the lower and higher temperature range.
Technical Paper

Ultra-Lean and High EGR Operation of Dual Mode, Turbulent Jet Ignition (DM-TJI) Engine with Active Pre-chamber Scavenging

2020-04-14
2020-01-1117
Continuous efforts to improve thermal efficiency and reduce exhaust emissions of internal combustion engines have resulted in development of various solutions towards improved lean burn ignition systems in spark ignition engines. The Dual Mode, Turbulent Jet Ignition (DM-TJI) system is one of the leading technologies in that regard which offers higher thermal efficiency and reduced NOx emissions due to its ability to operate with very lean or highly dilute mixtures. Compared to other pre-chamber ignition technologies, the DM-TJI system has the distinct capability to work with a very high level of EGR dilution (up to ~40%). Thus, this system enables the use of a three-way catalyst (TWC). Auxiliary air supply for pre-chamber purge allows this system to work with such high EGR dilution rate. This work presents the results of experimental investigation carried out with a Dual Mode, Turbulent Jet Ignition (DM-TJI) optical engine equipped with a cooled EGR system.
Journal Article

Optical Engine Operation to Attain Piston Temperatures Representative of Metal Engine Conditions

2017-03-28
2017-01-0619
Piston temperature plays a major role in determining details of fuel spray vaporization, fuel film deposition and the resulting combustion in direct-injection engines. Due to different heat transfer properties that occur in optical and all-metal engines, it becomes an inevitable requirement to verify the piston temperatures in both engine configurations before carrying out optical engine studies. A novel Spot Infrared-based Temperature (SIR-T) technique was developed to measure the piston window temperature in an optical engine. Chromium spots of 200 nm thickness were vacuum-arc deposited at different locations on a sapphire window. An infrared (IR) camera was used to record the intensity of radiation emitted by the deposited spots. From a set of calibration experiments, a relation was established between the IR camera measurements of these spots and the surface temperature measured by a thermocouple.
Journal Article

Experimental Studies of a Liquid Propane Auxiliary Fueled Turbulent Jet Igniter in a Rapid Compression Machine

2016-04-05
2016-01-0708
Lean combustion is a promising combustion technology that has the potential to improve engine efficiency while decreasing emissions. One reason why lean combustion has not been more widely implemented is that as the air-fuel ratio increases, the resulting flame propagation speed becomes slower and combustion becomes unstable. Turbulent jet ignition is a pre-chamber ignition enhancement concept that facilitates ultra-lean combustion by using a hot combusting jet as a distributed ignition source. The jet penetration allows for shorter flame travel distances, which decreases the overall burn duration and improves stability. By using a rich mixture in the pre-chamber, the pre-chamber mixture is easily ignitable and the transport of chemically active radical species and unburned fuel into the main-chamber charge improves ignition quality.
Technical Paper

Engine Calibration Using Global Optimization Methods with Customization

2020-04-14
2020-01-0270
The automotive industry is subject to stringent regulations in emissions and growing customer demands for better fuel consumption and vehicle performance. Engine calibration, a process that optimizes engine performance by tuning engine controls (actuators), becomes challenging nowadays due to significant increase of complexity of modern engines. The traditional sweep-based engine calibration method is no longer sustainable. To tackle the challenge, this work considers two powerful global optimization methods: genetic algorithm (GA) and Bayesian optimization for steady-state engine calibration for single speed-load point. GA is a branch of meta-heuristic methods that has shown a great potential on solving difficult problems in automotive engineering. Bayesian optimization is an efficient global optimization method that solves problems with computationally expensive testing such as hyperparameter tuning in deep neural network (DNN), engine testing, etc.
Technical Paper

Effect of Changing Compression Ratio on Ignition Delay Times of Iso-Octane in a Rapid Compression Machine

2020-04-14
2020-01-0338
Previous studies have shown that several facility dependent factors can influence ignition delay times measured in a rapid compression machine. Compression ratio variation represents one such aspect of many facility-to facility differences in RCMs, and can have a major impact on measured ignition delay times due to changes in surface-area-to-volume ratio, initial conditions and compression duration even when the same compressed conditions are maintained. In this study, iso-octane, which exhibits two stage ignition delay and has a pronounced negative temperature coefficient (NTC) region, is used to investigate the effects of changing compression ratio on ignition delay. Resulting trends are also compared to previous results obtained with ethanol, which has very different combustion properties. Experiments were carried out for rich mixtures (ϕ = 1.3) of iso-octane and air over a compressed temperature range of 675-900 K at 20 bar compressed pressure.
Journal Article

A Single Fuel Pre-Chamber Jet Ignition Powertrain Achieving High Load, High Efficiency and Near Zero NOx Emissions

2011-08-30
2011-01-2023
Turbulent Jet Ignition is an advanced spark initiated pre-chamber combustion system for otherwise standard spark ignition engines found in current passenger vehicles. This next generation pre-chamber design simply replaces the spark plug in a conventional spark ignition engine. Turbulent Jet Ignition enables very fast burn rates due to the ignition system producing multiple, widely distributed ignition sites, which consume the main charge rapidly. This high energy ignition results from the partially combusted (reacting) pre-chamber products initiating combustion in the main chamber. The distributed ignition sites enable relatively small flame travel distances enabling short combustion durations and high burn rates. Multiple benefits include extending the knock limit and initiating combustion in very dilute mixtures (excess air and/or EGR), with dilution levels being comparable to other low temperature combustion technologies (HCCI), without the complex control drawbacks.
Journal Article

Knock Limit Extension with a Gasoline Fueled Pre-Chamber Jet Igniter in a Modern Vehicle Powertrain

2012-04-16
2012-01-1143
Turbulent Jet Ignition is an advanced spark-initiated pre-chamber combustion system for otherwise standard spark ignition engines. Combustion in the main chamber is initiated by jets of partially combusted (reacting) pre-chamber products which provide a high energy ignition source. The resultant widely distributed ignition sites allow relatively small flame travel distances enabling short combustion durations and high burn rates. Demonstrated benefits include ultra lean operation (λ≻2) at part load and high load knock improvement. This study compared the knock limit of conventional spark ignition and pre-chamber jet ignition combustion with reducing fuel quality in a modern PFI engine platform. Seven PRF blends ranging from 93-60 octane were experimentally tested in a stoichiometric normally aspirated single-cylinder research engine at 1500 rev/min and ~WOT (98 kPa MAP).
Journal Article

A Gasoline Fueled Pre-Chamber Jet Ignition Combustion System at Unthrottled Conditions

2012-04-16
2012-01-0386
Turbulent Jet Ignition is an advanced spark-initiated pre-chamber combustion system for otherwise standard spark ignition engines. Combustion in the main chamber is initiated by jets of partially combusted (reacting) pre-chamber products which provide a high energy ignition source. The resultant widely distributed ignition sites allow relatively small flame travel distances enabling short combustion durations and high burn rates. Demonstrated benefits include ultra-lean operation (λ≻2) at part load and high-load knock improvement near stoichiometric conditions. Although previous results of this combustion system have been very promising, the main hurdle of this system has been the need for a dual-fuel system, with liquid gasoline used in the main combustion chamber and small fractions of gaseous propane in the pre-chamber.
Journal Article

Visualization of Propane and Natural Gas Spark Ignition and Turbulent Jet Ignition Combustion

2012-10-23
2012-32-0002
This study focuses on the combustion visualization of spark ignition combustion in an optical single cylinder engine using natural gas and propane at several air to fuel ratios and speed-load operating points. Propane and natural gas fuels were compared as they are the most promising gaseous alternative fuels for reciprocating powertrains, with both fuels beginning to find wide market penetration on the fleet level across many regions of the world. Additionally, when compared to gasoline, these gaseous fuels are affordable, have high knock resistance and relatively low carbon content and they do not suffer from the complex re-fueling and storage problems associated with hydrogen.
Journal Article

Air-to-Fuel and Dual-Fuel Ratio Control of an Internal Combustion Engine

2009-11-02
2009-01-2749
Air-to-fuel (A/F) ratio is the mass ratio of the air-to-fuel mixture trapped inside a cylinder before combustion begins, and it affects engine emissions, fuel economy, and other performances. Using an A/F ratio and dual-fuel ratio control oriented engine model, a multi-input-multi-output (MIMO) sliding mode control scheme is used to simultaneously control the mass flow rate of both port fuel injection (PFI) and direct injection (DI) systems. The control target is to regulate the A/F ratio at a desired level (e.g., at stoichiometric) and fuel ratio (ratio of PFI fueling vs. total fueling) to any desired level between zero and one. A MIMO sliding mode controller was designed with guaranteed stability to drive the system A/F and fuel ratios to the desired target under various air flow disturbances.
Technical Paper

Tribological Performance Assessment of Abradable Powder Coated Pistons Considering Piston Skirt Geometry and Surface Topography

2021-09-21
2021-01-1231
Surface coatings are one of the most widely used routes to enhance the tribological properties of cylinder kits due to effective sealing capability with low friction coefficient and high wear resistance. In the current study, we have conducted the surface texture characterization of the coating on piston skirts and evaluated the impact of a novel Abradable Powder Coating (APC) on cylinder-kit performance in comparison to stock pistons. The surface texture and characteristic properties varying across the piston skirt are obtained and analyzed via a 3D optical profiler and OmniSurf3D software. The engine operating conditions are found through a combination of measurements, testing, and a calibrated GT-Power model. The variable surface properties along with other dimensions, thermodynamic attributes, flow characteristics and material properties are used to build a model in CASE (Cylinder-kit Analysis System for Engines)- PISTON for both an APC coated piston and a stock piston.
Technical Paper

The Influence of Impact Interface on Human Knee Injury: Implications for Instrument Panel Design and the Lower Extremity Injury Criterion

1997-11-12
973327
Injury to the lower extremity during an automotive crash is a significant problem. While the introduction of safety features (i.e. seat belts, air bags) has significantly reduced fatalities, lower extremity injury now occurs more frequently, probably for a variety of reasons. Lower extremity trauma is currently based on a bone fracture criterion derived from human cadaver impact experiments. These impact experiments, conducted in the 1960's and 70's, typically used a rigid impact interface to deliver a blunt insult to the 90° flexed knee. The resulting criterion states that 10 kN is the maximum load allowed at the knee during an automotive crash when certifying new automobiles using anthropomorphic dummies. However, clinical studies suggest that subfracture loading can cause osteochondral microdamage which can progress to a chronic and debilitating joint disease.
Technical Paper

Automated Calibration of an Analytical Wall-Wetting Model

2007-01-23
2007-01-0018
This paper describes the development and automated calibration of a compact analytically based model of the wall-wetting phenomenon of modern port fuel-injected (PFI) spark-ignition (SI) gasoline engines. The wall-wetting model, based on the physics of forced convection with phase change, is to be used in an automated model-based calibration program. The first stage of work was to develop a model of the wall-wetting phenomenon in Matlab. The model was then calibrated using experimental data collected from a 1.8-litre turbocharged I4 engine coupled to a dynamic 200kW AC dynamometer. The calibration was accomplished by adopting a two stage optimization approach. Firstly, a design of experiments (DoE) approach was used to establish the effect of the principal model parameters on a set of metrics that characterized the magnitude and duration of the measured lambda deviation during a transient.
Technical Paper

A High Speed Flow Visualization Study of Fuel Spray Pattern Effect on Mixture Formation in a Low Pressure Direct Injection Gasoline Engine

2007-04-16
2007-01-1411
In developing a direct injection gasoline engine, the in-cylinder fuel air mixing is key to good performance and emissions. High speed visualization in an optically accessible single cylinder engine for direct injection gasoline engine applications is an effective tool to reveal the fuel spray pattern effect on mixture formation The fuel injectors in this study employ the unique multi-hole turbulence nozzles in a PFI-like (Port Fuel Injection) fuel system architecture specifically developed as a Low Pressure Direct Injection (LPDI) fuel injection system. In this study, three injector sprays with a narrow 40° spray angle, a 60°spray angle with 5°offset angle, and a wide 80° spray angle with 10° offset angle were evaluated. Image processing algorithms were developed to analyze the nature of in-cylinder fuel-air mixing and the extent of fuel spray impingement on the cylinder wall.
X