Refine Your Search




Search Results


Cooling Airflow System Modeling in CFD Using Assumption of Stationary Flow

Today CFD is an important tool for engineers in the automotive industry who model and simulate fluid flow. For the complex field of Underhood Thermal Management, CFD has become a very important tool to engineer the cooling airflow process in the engine bay of vehicles. Presenter Peter Gullberg, Chalmers University of Technology
Technical Paper

An Experimental Investigation of Fischer-Tropsch Fuels in a Light-Duty Diesel Engine

Experiments were performed using a Light-Duty, single-cylinder, research engine in which the emissions, fuel consumption and combustion characteristics of two Fischer-Tropsch (F-T) Diesel fuels derived from natural gas and two conventional Diesel fuels (Swedish low sulfur Diesel and European EN 590 Diesel) were compared. Due to their low aromatic contents combustion with the F-T Diesel fuels resulted in lower soot emissions than combustion with the conventional Diesel fuels. The hydrocarbon emissions were also significantly lower with F-T fuel combustion. Moreover the F-T fuels tended to yield lower CO emissions than the conventional Diesel fuels. The low emissions from the F-T Diesel fuels, and the potential for producing such fuels from biomass, are powerful reason for future interest and research in this field.
Technical Paper

HCCI Combustion Using Charge Stratification for Combustion Control

This work evaluates the effect of charge stratification on combustion phasing, rate of heat release and emissions for HCCI combustion. Engine experiments in both optical and traditional single cylinder engines were carried out with PRF50 as fuel. The amount of stratification as well as injection timing of the stratified charge was varied. It was found that a stratified charge can influence combustion phasing, increasing the stratification amount or late injection timing of the stratified charge leads to an advanced CA50 timing. The NOx emissions follows the CA50 advancement, advanced CA50 timing leads to higher NOx emissions. Correlation between CA50 can also be seen for HC and CO emissions when the injection timing was varied, late injection and thereby advanced CA50 timing leads to both lower HC and CO emissions.
Technical Paper

Ion Current Sensing in an Optical HCCI Engine with Negative Valve Overlap

Ion current sensors have high potential utility for obtaining feedback signals directly from the combustion chamber in internal combustion engines. This paper describes experiments performed in a single-cylinder optical engine operated in HCCI mode with negative valve overlap to explore this potential. A high-speed CCD camera was used to visualize the combustion progress in the cylinder, and the photographs obtained were compared with the ion current signals. The optical data indicate that the ions responsible for the chemiluminescence from the HCCI combustion have to be in contact with the sensing electrode for an ion current to start flowing through the measurement circuit. This also means that there will be an offset between the time at which 50% of the fuel mass has burned and 50% of the ion current peak value is reached, which is readily explained by the results presented in the paper.
Technical Paper

Numerical and Experimental Analysis of the Wall Film Thickness for Diesel Fuel Sprays Impinging on a Temperature-Controlled Wall

Analysis of spray-wall interaction is a major issue in the study of the combustion process in DI diesel engines. Along with spray characteristics, the investigation of impinging sprays and of liquid wall film development is fundamental for predicting the mixture formation. Simulations of these phenomena for diesel sprays need to be validated and improved; nevertheless they can extend and complement experimental measurements. In this paper the wall film thickness for impinging sprays was investigated by evaluating the heat transfer across a temperature controlled wall. In fact, heat transfer is significantly affected by the wall film thickness, and both experiments and simulations were carried out to correlate the wall temperature variations and film height. The numerical simulations were carried out using the STAR-CD and the KIVA-3V, rel. 2, codes.
Technical Paper

MonteCarlo Techniques in Thermal Analysis – Design Margins Determination Using Reduced Models and Experimental Data

In the paper several application techniques of MonteCarlo (MC) method applied to thermal analysis of space vehicles are presented. Although these methods are widely used in other engineering domains, their introduction to the thermal one is quite recent and not fully developed in the industrial practice. This paper aims at showing that, even without demanding computation resources (all what presented has been obtained with a single processor PC) MonteCarlo analysis techniques, in a preliminary design phase, can support and integrate engineering judgment of the thermal designer. In particular, it is exploited the applicability of the method to reduced thermal models, with a clear advantage in terms of computation time. An original approach is proposed, and results are shown. The papers shows the applicability of the MC method to the case when experimental data of the uncertain parameters are available, using the bootstrap re-sampling techniques.
Technical Paper

Analysis of Combustion Regimes in Compression Ignited Engines Using Parametric φ-T Dynamic Maps

The main purpose of this study is to apply the parametric φ-T (Equivalence Ratio-Temperature) map analysis coupled with 3D engine simulations to characterize different combustion modes in DI, Direct Injection, compression ignited engines in terms of combustion efficiency and emission formations. The conventional static map analysis has been extended by constructing the parametric maps of a dynamic nature for different species characterizing the combustion and emission formation processes. The results of the analysis prove the efficiency of different combustion modes when injection parameters were varied from early to retarded injections.
Technical Paper

Integrated Vehicle and Driveline Modeling

In the last years automotive industry has shown a growing interest in exploring the field of vehicle dynamic control, improving handling performances and safety of the vehicle, and actuating devices able to optimize the driving torque distribution to the wheels. These techniques are defined as torque vectoring. The potentiality of these systems relies on the strong coupling between longitudinal and lateral vehicle dynamics established by tires and powertrain. Due to this fact the detailed (and correct) simulation of the dynamic behaviour of the driveline has a strong importance in the development of these control systems, which aim is to optimize the contact forces distribution. The aim of this work is to build an integrated vehicle and powertrain model in order to provide a proper instrument to be used in the development of such systems, able to reproduce the dynamic interaction between vehicle and driveline and its effects on the handling performances.
Technical Paper

Flow Visualization Study of an HVAC Module Operated in Water

Centrifugal blowers serve as the primary source of airflow and aero-acoustic noise in automotive HVAC modules. Flow field measurements inside blowers indicate very complex flow patterns. A detailed flow visualization study was conducted on an actual HVAC fan module operated in water under dynamically similar conditions as those in air with the purpose of studying the complex flow patterns in order to improve the aerodynamic performance of the fan/scroll casing and diffuser components. Fan-scroll/diffuser interaction was also studied as function of fan speed. Conventional and special (shear thickening) dye injection flow visualization techniques were used to study the complex 3-dimensional vortical and unsteady flow patterns that occur in typical HVAC fans. A major advantage of the flow visualization technique using shear-thickening dye is its usefulness in high the Reynolds number flows that are typically encountered inside HVAC modules.
Technical Paper

Prerequisites for Extensive Computer Manikin Analysis – An Example with Hierarchical Task Analysis, File Exchange Protocol and a Relational Database

In this case study, a human factors engineering (HFE) analysis was carried out in the preliminary design phase of the Cupola. Cupola is a European Space Agency (ESA) module for manned space flights for the International Space Station (ISS) as part of a Barter Arrangement between ESA and the United States National Aeronautics and Space Administration (NASA). Manikin software was used early in the design process before the production of any flight hardware. The manikin analysis was supported by the use of hierarchical task analysis, a file exchange protocol and a relational database. This paper describes methodological aspects of the use of the supporting methods. Results show that hierarchical task analysis, a file exchange protocol and a relational database are prerequisites for successful extensive manikin analysis.
Technical Paper

Speed Limit in City Area and Improvement of Vehicle Front Design for Pedestrian Impact Protection-A Computer Simulation Study

This paper presented a part of results from an ongoing project for pedestrian protection, which is carried out at Chalmers University of Technology in Sweden. A validated pedestrian mathematical model was used in this study to simulate vehicle-pedestrian impacts. A large number of simulations have been carried out with various parameters. The injury-related parameters concerning head, chest, pelvis and lower extremities were calculated to evaluate the effect of impact speed and vehicle front structure on the risk of pedestrian injuries. The effect of following vehicle parameters was studied: stiffness of bumper, hood edge, hood top, windscreen frame, and shape of vehicle front structures. A parameter study was conducted by modelling vehicle-pedestrian impacts with various sizes of cars, mini vans, and light trucks. This choice represents the trends of new vehicle fleet and their frequency of involvement in real world accidents.
Technical Paper

Effect of the air density on the evolution and mixing properties of a GDI swirled spray

A swirl injector for GDI application was used to inject an iso-octane spray in a quiescent chamber, to study the effect of the air density on the spray behavior. Stroboscopic images are recorded at different delays from the injection trigger to study the spray shape and structure. The temporal evolution of different spray parameters, length, width, angle, volume, instantaneous global air-fuel ratio, is calculated from the images. The effect of the increasing air density is to shorten the time and length scale of the spray evolution.
Technical Paper

A Four Stroke Camless Engine, Operated in Homogeneous Charge Compression Ignition Mode with Commercial Gasoline

A single cylinder, naturally aspirated, four-stroke and camless (Otto) engine was operated in homogeneous charge compression ignition (HCCI) mode with commercial gasoline. The valve timing could be adjusted during engine operation, which made it possible to optimize the HCCI engine operation for different speed and load points in the part-load regime of a 5-cylinder 2.4 liter engine. Several tests were made with differing combinations of speed and load conditions, while varying the valve timing and the inlet manifold air pressure. Starting with conventional SI combustion, the negative valve overlap was increased until HCCI combustion was obtained. Then the influences of the equivalence ratio and the exhaust valve opening were investigated. With the engine operating on HCCI combustion, unthrottled and without preheating, the exhaust valve opening, the exhaust valve closing and the intake valve closing were optimized next.
Technical Paper

Gasoline HCCI Modeling: Computer Program Combining Detailed Chemistry and Gas Exchange Processes

A skeletal reaction mechanism (101 species, 479 reactions) for a range of aliphatic hydrocarbons was constructed for application to computational fluid dynamics (CFD) Gasoline Homogeneous Charge Compression Ignition (HCCI) engine modeling. The mechanism is able to predict shock tube ignition delays and premixed flame propagation velocities for the following components: hydrogen (H2), methane (CH4), acetylene (C2H2), propane (C3H8), n-heptane (C7H16) and iso-octane (C8H18). The mechanism is integrated with a simulation code combining both modeling of detailed chemistry and gas exchange processes. This simulation tool was constructed by connecting the SENKIN code of the CHEMKIN library to the AVL BOOST™ engine cycle simulation code. Using a complete engine cycle simulation code instead of a code that only considers the combustion process has a major advantage. The initial conditions at the intake valve closure (IVC) have no longer to be set.
Technical Paper

Heat Release in the End-Gas Prior to Knock in Lean, Rich and Stoichiometric Mixtures With and Without EGR

SI Engine knock is caused by autoignition in the unburnt part of the mixture (end-gas) ahead of the propagating flame. Autoignition of the end-gas occurs when the temperature and pressure exceeds a critical limit when comparatively slow reactions-releasing moderate amounts of heat-transform into ignition and rapid heat release. In this paper the difference in the heat released in the end-gas-by low temperature chemistry-between lean, rich, stochiometric, and stoichiometric mixtures diluted with cooled EGR was examined by measuring the temperature in the end-gas with Dual Broadband Rotational CARS. The measured temperature history was compared with an isentropic temperature calculated from the cylinder pressure trace. The experimentally obtained values for knock onset were compared with results from a two-zone thermodynamic model including detailed chemistry modeling of the end-gas reactions.
Technical Paper

The Effect of Knock on Heat Transfer in SI Engines

Heat transfer to the walls of the combustion chamber is increased by engine knock. In this study the influence of knock onset and knock intensity on the heat flux is investigated by examining over 10 000 individual engine cycles with a varying degree of knock. The heat transfer to the walls was estimated by measuring the combustion chamber wall temperature in an SI engine under knocking conditions. The influence of the air-fuel ratio and the orientation of the oscillating cylinder pressure-relative to the combustion chamber wall-were also investigated. It was found that knock intensities above 0.2 Mpa influenced the heat flux. At knock intensities above 0.6 Mpa, the peak heat flux was 2.5 times higher than for a non-knocking cycle. The direction of the oscillations did not affect the heat transfer.
Technical Paper

Numerical Evaluation of Direct Injection of Urea as NOx Reduction Method for Heavy Duty Diesel Engines

The effect of ammoniac deoxidizing agent (Urea) on the reduction of NOx produced in the Diesel engine was investigated numerically. Urea desolved in water was directly injected into the engine cylinder during the expansion stroke. The NOx deoxidizing process was described using a simplified chemical kinetic model coupled with the comprehensive kinetics of Diesel oil surrogate combustion. If the technology of DWI (Direct Water Injection) with the later injection timing is supposed to be used, the deoxidizing reactants could be delivered in a controlled amount directly into the flame plume zones, where NOx are forming. Numerical simulations for the Isotta Fraschini DI Diesel engine are carried out using the KIVA-3V code, modified to account for the “co-fuel” injection and reaction with combustion products. The results showed that the amount of NOx could be substantially reduced up to 80% with the injection timing and the fraction of Urea in the solution optimized.
Technical Paper

Application of Transient Temperature vs. Equivalence Ratio Emission Maps to Engine Simulations

In order to acquire knowledge about temperature vs. equivalence ratio, T-ϕ, conditions in which emissions are formed and destroyed, T-ϕ parametric maps were constructed for: 1 Soot and soot precursors (C2H2) 2 Nitrogen oxides (NO and NO2) 3 Unburnt intermediates (CH2O, H2 and CO) 4 Important radicals (HO2 and OH) Each map was obtained by plotting data from a large number of simulations for various T-ϕ combinations in a zero-dimensional, 0D, closed Perfectly Stirred Reactor, PSR. Initially, the influences of elapsed reaction time, pressure and EGR level were examined, varying one parameter at a time. Then, since both the elapsed time and pressure change in an engine cycle, the maps were constructed according to engine pressure traces obtained from Computational Fluid Dynamics, CFD, simulations. Since the pressure is changing in elapsed time intervals the maps are called transient.
Technical Paper

Performance of a Heavy Duty DME Diesel Engine - an Experimental Study

Combustion characteristics of dimethyl ether, DME, have been investigated experimentally, in a heavy duty single cylinder engine equipped with an adapted common rail fuel injection system, and the effects of varying injection timing, rail pressure and exhaust gas recirculation on the combustion and emission parameters. The results show that DME combustion does not produce soot and with the use of exhaust gas recirculation NOX emissions can also be reduced to very low levels. However, high injection pressure and/or a DME adopted combustion system is required to improve the mixing process and thus reduce the combustion duration and carbon monoxide emissions.
Technical Paper

The EGR Effects on Combustion Regimes in Compression Ignited Engines

The main purpose of this study is to investigate the effects of exhaust gases on different combustion modes in DI, Direct Injection, compression ignited engines in terms of combustion efficiency and emission formations. The conventional parametric Φ -T (Equivalence Ratio-Temperature) emission map analysis has been extended by constructing the transient maps for different species characterizing the combustion and emission formation processes. The results of the analysis prove the efficiency of different combustion modes when EGR loads and injection scenarios.