Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Shifter Fork Stiffness Correlation to Gear Shift Quality

2013-09-24
2013-01-2447
Shift quality of a manual transmission is a critical characteristic that requires utmost care while structuring the transmission. Shift quality is affected by many factors viz. synchronizer design, shifter design, gear design, transmission oil selection etc. This paper presents a correlation between stiffness of the shift fork in manual transmission with the gear shift quality using a gear shift quality assessment setup. Stiffness of shifter fork is optimized using contact pattern analysis and stiffness analysis on MSC Nastran. All the subsystem (i.e. synchronizer and the shift system component) are constrained to optimize the shift fork stiffness. A-5-speed manual transmission is used as an example to illustrate the same. A direct correlation of gear shift fork stiffness with the shift force experienced by the driver is established. The shift system was modeled in the UG NX 6.0 software to collate the synchronization force, shift system gap etc with the constraint on the shift fork.
Journal Article

Development of Dual Fuel (Diesel-CNG) Engine for SUV Application in India

2015-01-14
2015-26-0058
Towards the effort of reducing pollutant emissions, especially soot and nitrogen oxides, from direct injection Diesel engines, engineers have proposed various solutions, one of which is the use of a gaseous fuel as a partial supplement for liquid Diesel fuel. These engines are known as dual fuel combustion engines. A dual fuel (Diesel-CNG) engine is a base diesel engine fitted with a dual fuel conversion kit to enable use of clean burning alternative fuel like compressed natural gas. In this engine diesel and natural gas are burned simultaneously. Natural gas is fed into the cylinder along with intake air; the amount of diesel injection is reduced accordingly. Dual fuel engines have number of potential advantages like fuel flexibility, higher compression ratio, and better efficiency and less modifications on existing diesel engines. It is an ecological friendly technology due to lower PM and smoke emissions and retains the efficiency of diesel combustion.
Technical Paper

Thermal Performance and Ambient Airside Pressure Drop Prediction for Automotive Charge Air Cooler Using 1-D Simulation

2021-09-15
2021-28-0135
The present work discusses the developed simulation model aimed to predict the heat rejection (HR) performance and external pressure drop characteristics of automotive charge air cooler (CAC). Heat rejection and airside pressure drop characteristics of CAC were predicted for the conditions of different charge air mass flow rates and different cooling air velocities. The lack of detailed research on CAC performance prediction has motivated the development of the proposed simulation model. The present 1-D simulation has been developed based on the signal library of AMESIM application tool. Input parameters for this simulation such as core size, tube pitch, tube height, number of tubes, fin density, louver angle, louver pitch, charge air mass flow rate, cooling air velocity, charge air inlet temperature, and ambient temperature. Heat rejection curve and airside pressure drop of CAC were the output of the present simulation.
Technical Paper

1D Simulation-Based Methodology for Automotive Grill Opening Area Optimization

2021-09-15
2021-28-0133
This paper discusses the methodology setup for grill opening area prediction at the early development phase of the product development lifecycle, using a commercially available 1D simulation tool- AMESIM. Representative under hood has been modeled using Grill, Condenser, Radiator, intercooler, fan, and engine components. Vehicle velocity is used as an input to derive the airflow passing through the grill and other under-hood components based on ram air coefficient, pressure drop through different components (Grill, Heat exchanger, Fan & Engine). This airflow is used to predict the top tank temperature of the radiator. Derived airflow is correlated with airflow obtained from CFD simulation. A balance has been achieved between cooling drag & fan power consumption at different grill opening areas for target top tank temperature. Top tank temperature has been predicted at two different extreme engine heat rejection operating points.
Technical Paper

Engine out Particulate Emission Optimization with Multiple Injection Strategy for 3-Cylinder Turbo GDI E6d Engine

2021-09-22
2021-26-0070
With the increase in the number of automobiles on road, there is a very strong emphasis on reducing the air pollution which led to evolution of stringent emission norms. To meet these stringent emission norms, the ideal solution is to optimize the engine hardware and the combustion system to reduce the emission at source thereby reducing the dependency on exhaust after treatment system. Gasoline Direct Injection (GDI) engines are gaining popularity worldwide as they provide a balance between fun to drive and fuel efficiency. Controlling the particle emissions especially Particle Number (PN) is a challenge in GDI engines due to the nature of its combustion system. In this study, experiments were performed on a 1.2Litre 3-cylinder 250bar GDI engine to capture the effect of injection strategies on PN.
Technical Paper

EGR Strategies Pertaining to High Pressure and Low Pressure EGR in Heavy Duty CNG Engine to Optimize Exhaust Temperature and NOx Emissions

2021-09-22
2021-26-0114
CNG has proven to be a concrete alternative to gasoline and diesel fuel for sustained mobility. Due to stringent emission norms and sanctions being imposed on diesel fuel vehicles, OEMs have shifted their attention towards natural gas as an efficient and green fuel. Newly implemented BS VI emission norms in India have stressed on the reduction of Nitrogen Oxides (NOx) from the exhaust by almost 85% as compared to BS IV emission norms. Also, Indian Automotive market is fuel economy cautious. This challenges to focus on improving fuel economy but without increase in NOx emissions. Exhaust Gas Recirculation (EGR) has the potential to reduce the NOx emissions by decreasing the in-cylinder temperature. The objective of the paper is to model a CNG TCIC engine using 1D simulation in order to optimize the NOx emissions and maintain exhaust temperatures under failsafe limits.
Technical Paper

Development of an all Speed Governed Diesel-CNG Dual Fuel Engine for Farm Applications

2021-09-22
2021-26-0101
This paper discusses the development of an all speed governed diesel-natural gas dual fuel engine for agricultural farm tractor. A 45 hp, 2.9 liters diesel-natural gas dual fuel engine with a novel closed loop secondary fuel injection system was developed. A frugal approach without any modification of the base mechanical diesel fuel injection system was followed. This approach helped to minimize the cost impact, while meeting performance and emissions at par with neat diesel operation. Additional cost on gas injection system is redeemed by cost savings on diesel fuel. The dual fuel technology developed by Mahindra & Mahindra Ltd., substitutes on an average approximately 40% of diesel with compressed natural gas, meeting the TREM III A emission norms for dual fuel while meeting all application requirements. The governing performance of the tractor was found to be superior than base diesel tractor.
Technical Paper

Chemical Profiling of Exhaust Particulate Matter from Indian In-Service Vehicles

2021-09-22
2021-26-0192
Particulate matter is one of the major pollutant responsible for deteriorating air quality, particularly in urban centers. Information on contributing sources with the share from different sources is a first and one of the important steps in controlling pollution. Diverse sources, anthropogenic as well as natural, like industries, transport, domestic burning, construction, wind-blown dust, road dust contribute to particulate matter pollution. Receptor modeling is a scientific method which is utilized for assessment of the contribution of various sources based on chemical characteristics of particulate matter sources and ambient air particulate matter. Representative data of fractions of various chemical species in the particulate matter from the different sources i.e. source fingerprint is an essential input for the receptor modeling approach.
Technical Paper

Multi Axis Fatigue Test of Lift Axle Assembly through Real Time Simulation Abstract

2021-09-22
2021-26-0486
This paper discusses the test setup and methodology required to validate complete lift axle assembly for simulating the real time test track data. The correlation of rig vs track is discussed. The approach for reduction of validation time by eliminating few of the non-damaging tracks/events, its correlation with real life condition is discussed, and details are presented. With increased competition, vehicle development time has reduced drastically in recent past. Bench test procedure using accelerated test cycle discussed in this paper will help to reduce development time and cost. Process briefed in this paper can also be used for similar test specification for other structural parts or complete suspension system of heavy commercial vehicles.
Technical Paper

Improvement in the Brake Pedal Feel Comfort for Light Commercial Vehicles with Hydraulic Brake System

2021-09-22
2021-26-0515
Being a safety critical aggregate, every aspect of brake system is considered significant in vehicles operations. Along with optimum performance of brake system in terms of deceleration generation, brake pedal feel or brake feel is considered as one of the key elements while evaluating brake system of vehicles. There are many factors such as liner and drum condition, road surface, friction between linkages which impress the pedal feel. Out of these, in this paper we will be discussing the factors which influence the brake pedal feel in relation to the driver comfort and confidence building. Under optimum braking condition, brake operation must be completed with pedal effort not very less or not very high, brake pedal feel must be firm throughout the operation, in such a way that it will not create fatigue and at the same time it will give enough confidence to the driver while operating with acceptable travel.
Technical Paper

Effect of Variable Geometry Fin in Automotive Condenser Using Analytical and CFD Approach

2020-08-18
2020-28-0028
Major focus was given on the Comfort, Fuel efficiency & Safety during the development of the passenger cars, which certainly drives the vehicle business of Original Equipment Manufacturer (OEM’s). The air Conditioning in a car, plays an important role in the area of comfort of the passengers and fuel efficiency point of view. Especially Heat Exchanger plays a pivotal role in the air conditioning system. So, it’s a challenge for the OEM’s to select and design the optimal heat exchanger from the supplier, which meets the performance and packaging requirements during the design phase of the product development cycle. The objective of this paper to focus on analytical calculation or framework was developed using an excel tool considering the effect of variable geometry of fin which includes louver pitch, louver angle and louver length in a multi-pass condenser. Further, this theoretical calculation was validated using experimental data and CFD simulation.
Technical Paper

Gear Shift Pattern Optimization for Best Fuel Economy, Performance and Emissions

2020-04-14
2020-01-1280
As the FTP-75 drive cycle does not have a prescribed gear shift pattern, automotive OEMs have the flexibility to design. Conventionally, gear shift pattern was formulated based on trial and error method, typically with 10 to 12 iterations on chassis dynamometer. It was a time consuming (i.e. ~ 3 to 4 months) and expensive process. This approach led to declaring poor fuel economy (FE). A simulation procedure was required to generate a gear shift pattern that gives optimal trade-off amongst conflicting objectives (FE, performance and emissions). As a result, a simulation tool was developed in MATLAB to generate an optimum gear shift pattern. Three different SUV/UV models were used as test vehicles in this study. Chassis dyno testing was conducted, and data was collected using the base and optimized gear shift patterns. Dyno test results with optimized gear shift pattern showed FE improvement of ~ 4 to 5% while retaining the NOx margin well above engineering targets.
Technical Paper

EGR Flow Control Strategy for a Smaller Capacity Diesel Engine Using a Phase Shifting Chamber

2020-04-14
2020-01-1358
Exhaust gas recirculation (EGR) is an effective strategy to control NOx emissions in diesel engines. EGR reduces NOx through lowering the oxygen concentration in the combustion chamber, as well as through heat absorption. The stringent emission norms have forced diesel engines to further improve thermal efficiency and reduce nitrogen oxides (NOx). Throttle control is adopted in diesel intake system to control the EGR & fresh charge flow and to meet the emissions norms. In three or lesser cylinder. diesel engines, predominantly single and two-cylinder diesel engines, there is a higher possibility of the exhaust gas reaching the intake throttle and Particulate matter getting deposited on the throttle body. This can significantly affect the idling stability and intake restriction in prolonged usage. In idling condition, the clogged throttle body stagnates the fresh charge from entering the cylinder. The work aims at the study of flow pattern for EGR reaching the throttle body.
Technical Paper

Development of a Component Level Test Methodology to Validate the Transmission Bush of a Manual Gear Box

2020-04-14
2020-01-1409
In the era of fierce competition, launching a defect free product on time would be the key to success. In a modern automobile, the transmission system is designed with utmost care in order to transfer the maximum power from engine to driveline smoothly and efficiently. Optimized design of all the transmission components is necessary in order to meet the power requirement with the least possible weight. This optimization may require gear designs with different internal diameters. The assembly of these gears may not be possible on a solid transmission shaft. To facilitate assembling while retaining optimum design of transmission parts, a separate bush is designed to overcome this limitation. Some bushes may require a flange to restrict any free play of the mounted gear in its axial direction. During complete system level testing of one newly developed manual transmission, bush failure was observed.
Technical Paper

Simulation Methodology for Duty Cycle based Fuel Consumption Calculation for Heavy Commercial Vehicles

2021-09-22
2021-26-0221
Automobile industry is facing challenges in the field of technological innovation and achieving minimum Total Cost of Ownership (TCO) despite rise in fuel prices. To overcome these challenges is certainly a challenging task. In doing so, automobile sector is mainly focused on passenger safety, comfort, reliability, meeting stringent emission norms, and above all reducing the vehicle fuel consumption. Referring to the Paris climate agreement, and India’s commitment to reduce the CO2 intensity by 33% - 35% by 2030 below the 2005 levels [1], it is imperative to lay down strong policies and procedure to curb the fuel consumption to contribute for reduction in carbon foot print and oil imports. Transportation sector is majorly responsible for the GHG Emission of which the CO2 emission from commercial vehicles is nearly 73% [2], although the total sales of commercial vehicles are around 4% of cumulative vehicle sales.
Technical Paper

Prediction of Tyre Dynamic Behaviour for NVH and its Experimental Validation in Anechoic Chamber

2021-09-22
2021-26-0303
In present scenario, tyre industry is more focused on providing maximum extent of NVH comfort to passengers by improvising the tyre design. Noise contribution from the tyres is classified in to three regions, viz., structure-borne (tyre vibrations), air-borne (tread pattern) and cavity noise (air cavity). In general, a Finite Element (FE) model of tyre provides an inherent advantage of analyzing tyre dynamic behavior. In this paper, an attempt was made to develop a three-dimensional FE tyre model and validate the same through experimental approach. The CAD Model of the tyre was generated through 3D image scanning process. Material property extraction of tyre was carried out by Universal Testing Machine (UTM) to generate Finite Element (FE) model. For validation of tyre FE model, Experimental Modal Analysis (EMA) and Noise Transfer Function (NTF) were conducted.
Technical Paper

Methodology Development for Open Station Tractor OEL Noise Assessment in the Virtual Environment

2021-09-22
2021-26-0310
There is a higher demand for quieter tractors in the agri-industry, as the continued exposure to noise levels have disastrous effects on operator’s health. To meet the world-wide regulatory norms and to be the global market leader, its mandatory to develop the comfortable tractor which meets homologation requirements and customer expectations. Typically, Operator Ear Level (OEL) noise has been evaluated in the test, after First Proto has been made. This approach increases cost associated with product development due to late changes of modifications and testing trails causing delay in time-to-market aspect. Hence, there is a need to develop the methodology for Predicting tractor OEL noise in virtual environment and propose changes at early stage of product development. At first, full vehicle comprising of skid, sheet metals and Intake-exhaust systems modelled has been built using Finite Element (FE) Preprocessor.
Technical Paper

Fuel Efficiency Simulation Methodology for Commercial Vehicles: Approach to Generate Dynamic Duty Cycles for Simulation

2021-09-22
2021-26-0343
Fuel efficiency is critical aspect for commercial vehicles as fuel is major part of operational costs. To complicate scenario further, fuel efficiency testing, unlike in passenger cars is more time consuming and laborious. Thus, to save on development cost and save time in actual testing, simulations plays crucial role. Typically, actual vehicle speed and gear usage is captured using reference vehicle in desired route and used it for simulation of target vehicle. Limitation to this approach is captured duty cycle is specific to powertrain and driver behavior of reference vehicle. Any change in powertrain or vehicle resistance or driver of target vehicle will alter duty cycle and hence duty cycle of reference vehicle is no more valid for simulation assessment. This paper demonstrates approach which uses combination of tools to address this challenge. Simulation approach proposed here have three parts.
Technical Paper

Multi-Axial Road Simulation for Component Level Validation of Engine Mount Structure and Elastomer

2021-09-22
2021-26-0452
Today, reducing the vehicle development time is a very crucial task. In the early development stages, the limited time and few vehicle prototypes are available for validation. In such scenarios, durability validation of different design iterations of critical components like engine mounts, with respect to the real road usage is a challenge. Road simulation testing in a laboratory is a reliable approach to fatigue and durability tests for the evaluation of platforms, components and subassemblies. Durability evaluation of engine mount is, generally, performed either at assembly level, using multi-axial road simulation approach or at component level, using uniaxial sinusoidal load testing. The new testing approach here allows testing of engine mounts at component level using road simulation approach by applying multi-axial loads or deflections as per the real road usage conditions.
Technical Paper

Accurate Steering System Modelling for Vehicle Handling and Steering Performance Prediction Using CAE

2021-09-22
2021-26-0403
The automobile industry strives to develop high-quality vehicles quickly that fulfill the buyer’s needs and stand out within the competition. Full utilization of simulation and Computer-Aided Engineering (CAE) tools can empower quick assessment of different vehicle concepts and setups without building physical models. Vehicle execution assessment is critical in the vehicle development process, requiring exact vehicle steering system models. The effect of steering system stiffness is vital for vehicle handling, stability, and steering performance studies. The overall steering stiffness is usually not modeled accurately. Usually, torsion bar stiffness alone is considered in the modeling. The modeling of overall steering stiffness along with torsion bar stiffness is studied in this paper. Another major contributing factor to steering performance is steering friction. The steering friction is also often not considered properly.
X