Refine Your Search

Topic

Search Results

Viewing 1 to 10 of 10
Journal Article

A Numerical Study on Detailed Soot Formation Processes in Diesel Combustion

2014-10-13
2014-01-2566
This study simulates soot formation processes in diesel combustion using a large eddy simulation (LES) model, based on a one-equation subgrid turbulent kinetic energy model. This approach was implemented in the KIVA4 code, and used to model diesel spray combustion within a constant volume chamber. The combustion model uses a direct integration approach with a fast explicit ordinary differential equation (ODE) solver, and is additionally parallelized using OpenMP. The soot mass production within each computation cell was determined using a phenomenological soot formation model developed by Waseda University. This model was combined with the LES code mentioned above, and included the following important steps: particle inception during which acenaphthylene (A2R5) grows irreversibly to form soot; surface growth with driven by reactions with C2H2; surface oxidation by OH radical and O2 attack; and particle coagulation.
Technical Paper

Detection of Transient Noise of Car Interior Using Non-stationary Signal Analysis

1998-02-23
980589
A method to inspect the rattle generated in a vehicle cabin has been developed. In the method, the waveform of overall in-cabin noise is analyzed using Wigner distribution, a kind of time-frequency analysis, and the rattle component of the waveform is condensed and separated from the background shake noise. Then the rattle component is classified into three levels, strong, middle and not detected, using a neural network. Fuzzy inference is also used to select normal waveform data. Experimental results show that the correct classification ratio of the method is more than 90%, which equals the ability of skilled inspectors.
Technical Paper

Collapse of Thin-Walled Curved Beam with Closed-Hat Section - Part 2: Simulation by Plane Plastic Hinge Model

1990-02-01
900461
This paper describes a calculating method to predict the quasi-static collapsing behaviors of spot-welded closed-hat section curved beams under axial compression. The overall deformat ions and the local buckling modes of beams were calculated using a geometrical model. Force-displacement relations were predicted by a elastic-plastic structural analysis method using the ‘plastic hinge’ concept. Collapsing tests were made on beams which are differenting section size, rotation angle, and metal sheet thickness. Comparisons between the calculated and experimental results of deformed shapes of beams, the local buckling modes and the force displacement relations are discussed.
Technical Paper

Spot Friction Welding of Aluminum to Steel

2007-04-16
2007-01-1703
Spot friction welding (SFW) is a cost-effective spot joining technology for aluminum sheets compared with resistance spot welding (RSW) [1]. In this study, coated mild steel was spot friction welded to 6000 series aluminum using a tool with shoulder diameter of 10 mm and welding conditions of 1500-2000 rpm and time of 5 s. Testing showed that tensile shear strength increased as the solidus temperature of the coating on the steel decreased. Microstructure characterizations of steel/Al joint interfaces showed that zinc from the coatings was incorporated into the stir nuggets and that intermetallic phases may have formed but not in continuous layers. Some Al-Zn oxides that appeared to be amorphous were also found in the joint interfaces.
Technical Paper

Application of Plasma Welding to Tailor- Welded Blanks

2003-10-27
2003-01-2860
In recent years, improving fuel efficiency and collision safety are important issue. We have worked on a new construction method to develop body structure which is light weight and strong/stiff. We adopt multi type Tailor-Welded Blanks (TWB) which is formed after welding several steel sheets for ATENZA (MAZDA 6), NEW DEMIO (MAZDA 2), and RX-8. This is a technology to consistently improve of such product properties and to reduce costs. Laser welding is a common TWB welding method, but for further equipment cost reductions and productivity improvements, we have developed a higher welding speed and robust plasma welding and introduced this to mass production. We introduce this activity and results in this report.
Technical Paper

Application of Vibration Damping Steel Sheet for Autobody Structural Parts

1992-02-01
920249
As a demand for vehicles of higher functionality grows, automakers and material suppliers are devoting increasing efforts to develop technologies for greater safety, lighter weight, higher corrosion resistance, and enhanced quietness. The resin-sandwiched vibration damping steel sheet (VDSS), developed as a highly functional material for reducing vehicle vibration and noise, has been used for oil pans1) and compartment partitions2). First applied for a structural dash panel of the new Mazda 929, a Zn-Ni electroplated VDSS which allows direct electric welding has contributed to greater weight reduction as well as improved quietness.
Technical Paper

A Development of Statistical Human Back Contour Model for Backrest Comfort Evaluation

1993-03-01
930114
First, this paper describes a measurement of the human back-backrest interface contours and a reduction procedure of the measured contours to reconstruct the statistical back contours of American 50 and 95-percentile male. Second, the paper illustrates the difference of the back contour between the statistical male drivers and SAE 3-D Manikin. Finally, the advantage of using the back contour model in experiment is given. The AM 50 back contour model was used as a loader to obtain the backrest pressure distribution and proved an excellent tool for backrest comfort evaluation.
Technical Paper

Development of Simultaneous Zinc Phosphating Process for Aluminum and Steel Plates

1993-11-01
931936
A method was studied for simultaneous zinc phosphating on aluminum and steel surfaces to obtain high corrosion resistance on aluminum surfaces, which conventional phosphatic processing could not provide with sufficient corrosion resistance. Since aluminum is protected by an oxide film on its surface, it has poor processability with zinc phosphating solutions applied to steel. An appropriate quantity of fluoride was therefore added to improve processing, and the coating film, aluminum composition and surface conditions were optimized to suppress filiform corrosion, which is characterized by string-like blisters of paint film starting from a paint defect. In addition, in view of the actual production environment, the corrosion resistance of the ground area made for readjustment after stamping was studied for the optimization of the processing solution.
Technical Paper

The Corrosion Resistance of Organic Composite-Coated Steel Sheets

1993-10-01
932365
In order to investigate the corrosion resistance of organic composite-coated steel sheets ( OCS ) in a real automotive environment, many kinds of corrosion tests were performed on test pieces and real automotive doors. Tests with a corrosive solution including iron rust were introduced to simulate the real corrosive environment of automotive doors. The relationship between the components of OCS and the corrosion resistance in the rust-including tests was examined. In addition, electrochemical studies were performed. Results indicate OCS has much better corrosion resistance than plated steel sheets with heavier coating weight in all tests. OCS shows excellent corrosion resistance in rust-free corrosive solution, however, some types of OCS do have corrosion concerns in rust-including tests. It became clear that these OCS types have an organic coating with lower cross-linking.
Technical Paper

Numerical Simulation on Soot Formation in Diesel Combustion by Using a CFD Code Combined with a Parallelized Explicit ODE Solver

2014-10-13
2014-01-2567
The objective of the present study is to analyze soot formation in diesel engine combustion by using multi-dimensional combustion simulations with a parallelized explicit ODE solver. Parallelized CHEMEQ2 was used to perform detailed chemical kinetics in KIVA-4 code. CHEMEQ2 is an explicit stiff ODE solver developed by Mott et al. which is known to be faster than traditional implicit ODE solvers, e.g., DVODE. In the present study, about eight times faster computation was achieved with CHEMEQ2 compared to DVODE when using a single thread. Further, by parallelizing CHEMEQ2 using OpenMP, the simulations could be run not only on calculation servers but also on desktop machines. The computation time decreases with the number of threads used. The parallelized CHEMEQ2 enabled combustion and emission characteristics, including detailed soot formation processes, to be predicted using KIVA-4 code with detailed chemical kinetics without the need for reducing the reaction mechanism.
X