Refine Your Search

Topic

Author

Affiliation

Search Results

Video

BMW Technology/Strategy Regarding EV

2011-11-04
The BMW Group has introduced electric cars to the market with the MINI E already in 2009. The next step will be the launch of the BMW ActiveE in 2011, followed by the revolutionary Mega City Vehicle in 2013. The presentation will explain the BMW Group strategy for implementing sustainable mobility. A focus will be emobility, the use of carbon fiber and the holistic sustainability approach of BMW Group?s project i. Reference will be made to the research results of the MINI E projects in the US and in Europe. Presenter Andreas Klugescheid, BMW AG
Journal Article

Proposed Standards and Tools for Risk Analysis and Allocation of Robotic Systems to Enhance Crew Safety during Planetary Surface Exploration

2009-07-12
2009-01-2530
Several space agencies have announced plans to return humans to the Moon in the near future. The objectives of these missions include using the Moon as a stepping-stone towards crewed missions to Mars, to test advanced technology, and to further exploration of the Moon for scientific research and in-situ resource utilization. To meet these objectives, it will be necessary to establish and operate a lunar base. As a result, a wide variety of tasks that may pose a number of crew health and safety risks will need to be performed on the surface of the Moon. Therefore, to ensure sustainable human presence on the Moon and beyond, it is essential to anticipate potential risks, assess the impact of each risk, and devise mitigation strategies. To address this, a nine-week intensive investigation was performed by an international, interdisciplinary and intercultural team on how to maximize crew safety on the lunar surface through a symbiotic relationship between astronauts and robots.
Technical Paper

Multitarget Evaluation of Hybrid Electric Vehicle Powertrain Architectures Considering Fuel Economy and Battery Lifetime

2020-06-30
2020-37-0015
Hybrid electric vehicle (HEV) powertrains are characterized by a complex design environment as a result of both the large number of possible layouts and the need for dedicated energy management strategies. When selecting the most suitable hybrid powertrain architecture at an early design stage of HEVs, engineers usually focus solely on fuel economy (directly linked to tailpipe emissions) and vehicle drivability performance. However, high voltage batteries are a crucial component of HEVs as well in terms of performance and cost. This paper introduces a multitarget assessment framework for HEV powertrain architectures which considers both fuel economy and battery lifetime. A multi-objective formulation of dynamic programming is initially presented as an off-line optimal HEV energy management strategy capable of predicting both fuel economy performance and battery lifetime of HEV powertrain layout options.
Technical Paper

Model-Based Calibration of an Automotive Climate Control System

2020-04-14
2020-01-1253
This paper describes a novel approach for modeling an automotive HVAC unit. The model consists of black-box models trained with experimental data from a self-developed measurement setup. It is capable of predicting the temperature and mass flow of the air entering the vehicle cabin at the various air vents. A combination of temperature and velocity sensors is the basis of the measurement setup. A measurement fault analysis is conducted to validate the accuracy of the measurement system. As the data collection is done under fluctuating ambient conditions, a review of the impact of various ambient conditions on the HVAC unit is performed. Correction models that account for the different ambient conditions incorporate these results. Numerous types of black-box models are compared to identify the best-suited type for this approach. Moreover, the accuracy of the model is validated using test drive data.
Technical Paper

A Comparison of Componentization Constructs for Supporting Modularity in Simulink

2020-04-14
2020-01-1290
The Model-Based Development (MBD) paradigm is widely used for embedded controls development, with the MathWorks Simulink modelling environment being extensively used in the automotive industry. As production-scale Simulink models are typically large and complex, there exists a need to decompose them properly in order to facilitate their maintainability, understandability, and evolution. MathWorks recommends the use of three constructs for model “componentization” or decomposition: the Subsystem, Library, and Model Reference. However, a recently added construct introduced in Simulink R2014b, the Simulink Function, can also be used for this purpose, while also supporting information hiding due to the construct’s ability to be scoped and encapsulate data.
Journal Article

Bridging the Gap between Open Loop Tests and Statistical Validation for Highly Automated Driving

2017-03-28
2017-01-1403
Highly automated driving (HAD) is under rapid development and will be available for customers within the next years. However the evidence that HAD is at least as safe as human driving has still not been produced. The challenge is to drive hundreds of millions of test kilometers without incidents to show that statistically HAD is significantly safer. One approach is to let a HAD function run in parallel with human drivers in customer cars to utilize a fraction of the billions of kilometers driven every year. To guarantee safety, the function under test (FUT) has access to sensors but its output is not executed, which results in an open loop problem. To overcome this shortcoming, the proposed method consists of four steps to close the loop for the FUT. First, sensor data from real driving scenarios is fused in a world model and enhanced by incorporating future time steps into original measurements.
Technical Paper

A Dynamic Programming Algorithm for HEV Powertrains Using Battery Power as State Variable

2020-04-14
2020-01-0271
One of the first steps in powertrain design is to assess its best performance and consumption in a virtual phase. Regarding hybrid electric vehicles (HEVs), it is important to define the best mode profile through a cycle in order to maximize fuel economy. To assist in that task, several off-line optimization algorithms were developed, with Dynamic Programming (DP) being the most common one. The DP algorithm generates the control actions that will result in the most optimal fuel economy of the powertrain for a known driving cycle. Although this method results in the global optimum behavior, the DP tool comes with a high computational cost. The charge-sustaining requirement and the necessity of capturing extremely small variations in the battery state of charge (SOC) makes this state vector an enormous variable. As things move fast in the industry, a rapid tool with the same performance is required.
Journal Article

Possible Influences on Fuel Consumption Calculations while using the Hydrogen-Balance Method

2008-04-14
2008-01-1037
The Hydrogen-Balance equation makes it possible to calculate the fuel economy or fuel consumption of hydrogen powered vehicles simply by analyzing exhaust emissions. While the benefits of such a method are apparent, it is important to discuss possible influencing factors that may decrease Hydrogen-Balance accuracy. Measuring vehicle exhaust emissions is done with a CVS (Constant Volume Sampling) system. While the CVS system has proven itself both robust and precise over the years, utilizing it for hydrogen applications requires extra caution to retain measurement accuracy. Consideration should be given to all testing equipment, as well as the vehicle being tested. Certain environmental factors may also play a role not just in Hydrogen-Balance accuracy, but as also in other low emission testing accuracy.
Journal Article

Achieving a Scalable E/E-Architecture Using AUTOSAR and Virtualization

2013-04-08
2013-01-1399
Today's automotive software integration is a static process. Hardware and software form a fixed package and thus hinder the integration of new electric and electronic features once the specification has been completed. Usually software components assigned to an ECU cannot be easily transferred to other devices after they have been deployed. The main reasons are high system configuration and integration complexity, although shifting functions from one to another ECU is a feature which is generally supported by AUTOSAR. The concept of a Virtual Functional Bus allows a strict separation between applications and infrastructure and avoids source code modifications. But still further tooling is needed to reconfigure the AUTOSAR Basic Software (BSW). Other challenges for AUTOSAR are mixed integrity, versioning and multi-core support. The upcoming BMW E/E-domain oriented architecture will require all these features to be scalable across all vehicle model ranges.
Technical Paper

The Particle Number Counter as a “Black Box” - A Novel Approach to a Universal Particle Number Calibration Standard for Automotive Exhaust

2020-09-15
2020-01-2195
The reduction of vehicle exhaust particle emissions is a success story of European legislation. Various particle number (PN) counters and calibration procedures serve as tools to enforce PN emission limits during vehicle type approval (VTA) or periodical technical inspection (PTI) of in-use vehicles. Although all devices and procedures apply to the same PN-metric, they were developed for different purposes, by different stakeholder groups and for different target costs and technical scopes. Furthermore, their calibration procedures were independently defined by different stakeholder communities. This frequently leads to comparability and interpretation issues. Systematic differences of stationary and mobile PN counters (PN-PEMS) are well-documented. New, low-cost PTI PN counters will aggravate this problem. Today, tools to directly compare different instruments are scarce.
Technical Paper

New Driving Stability Control System with Reduced Technical Effort for Compact and Medium Class Passenger Cars

1998-02-23
980234
Wheel slip control system have found a remarkable penetration in all car segments. The information on the wheel behavior has lead to further developments which control the brake performance as well as the driving of the car in general. Latest systems introduced especially on luxury cars use wheel individual brake intervention to ensure vehicle stability under various driving maneuvers within the physical limits. Such systems use vehicle dynamic sensors and special hydraulics which serve as energy source for the automatic brake application. The technical effort of such systems like the Dynamic Stability Control DSC has limited the installation to upper class cars so far. New approaches are required to allow for a more wide spread penetration. Optimized hydraulics together with a rational design of the electronics seems to offer a basis for a more cost effective design.
Technical Paper

Experimental Investigations and Computations of Unsteady Flow Past a Real Car Using a Robust Elliptic Relaxation Closure with a Universal Wall Treatment

2007-04-16
2007-01-0104
In the present work we investigated experimentally and computationally the unsteady flow around a BMW car model including wheels*. This simulation yields mean flow and turbulence fields, enabling the study aerodynamic coefficients (drag and lift coefficients, three-dimensional/spatial wall-pressure distribution) as well as some unsteady flow phenomena in the car wake (analysis of the vortex shedding frequency). Comparisons with experimental findings are presented. The computational approach used is based on solving the complete transient Reynolds-Averaged Navier-Stokes (TRANS) equations. Special attention is devoted to turbulence modelling and the near-wall treatment of turbulence. The flow calculations were performed using a robust, eddy-viscosity-based ζ - ƒ turbulence model in the framework of the elliptic relaxation concept and in conjunction with the universal wall treatment, combining integration up to the wall and wall functions.
Technical Paper

Considerations Implementing a Dual Voltage Power Network

1998-10-19
98C008
Innovative electric systems demand a new approach for the distribution of electric energy in passenger cars. This paper describes a very promising solution-the dual voltage power network with an upper voltage level of 42V, and the considerations which led to the selection of this voltage level. Owing to the significant impact on the industry, a common standard is required. Depending on their profile, OEMs will select their own strategies for implementation, either as a base for innovation or to enhance overall system efficiency. This will lead to different approaches and timeframes.
Technical Paper

Neutron Radiography of Convective and Thermophoretic Diesel Engine Exhaust Soot Depositions in a Cooled Rectangular Chamber

2008-04-14
2008-01-1174
An investigation was performed to study the effects of convection, diffusion and thermophoresis on diesel exhaust soot deposition inside a plate-type rectangular cooling section for recirculation (EGR) applications since deposited soot can be detrimental to the heat transfer efficiency of EGR cooling devices. A non-destructive neutron radiography technique was used to measure the soot deposition thickness distribution on the plate surface inside the cooling chamber. The chamber cooled with an inlet water coolant of 20 and 40°C, was installed in a modified exhaust system of a 2.4kW diesel engine and subjected to a mass flow rate of 20kg/hr of diesel exhaust ranging 0 to 3 hours with the exhaust gas temperature at 260°C upstream of the cooling chamber. In this work, the effect of cooling temperature and operation time on thermophoretic deposition was investigated.
Technical Paper

Equations and Methods for Testing Hydrogen Fuel Consumption using Exhaust Emissions

2008-04-14
2008-01-1036
Although hydrogen ICE engines have existed in one sort or another for many years, the testing of fuel consumption by way of exhaust emissions is not yet a proven method. The current consumption method for gasoline- and diesel-fueled vehicles is called the Carbon-Balance method, and it works by testing the vehicle exhaust for all carbon-containing components. Through conservation of mass, the carbon that comes out as exhaust must have gone in as fuel. Just like the Carbon-Balance method for gas and diesel engines, the new Hydrogen-Balance equation works on the principle that what goes into the engine must come out as exhaust components. This allows for fuel consumption measurements without direct contact with the fuel. This means increased accuracy and simplicity. This new method requires some modifications to the testing procedures and CVS (Constant Volume Sampling) system.
Technical Paper

Formability of an Automotive Aluminum Alloy-AA5754 CC

2008-04-14
2008-01-1094
We have studied the formability of continuous strip cast (CC) AA5754 aluminum alloy for automotive applications. Strip casting technology can considerably reduce material cost compared with conventional direct chill (DC) cast aluminum sheets. However, the CC material tends to exhibit much less post-localization deformation and lower fracture strains compared with DC sheets with similar Fe content, although both alloys show similar strains for the onset of localization. Bendability of the CC alloy is also found to be inferior. The inferior behavior (post-necking and bendability) of the CC alloy can be attributed to the higher incidence of stringer-type particle distributions in the alloy. The formability of the AA5754 alloy has also been studied using two dimensional microstructure-based finite element modeling. The microstructures are represented by grains and experimentally measured particle distributions.
Technical Paper

Modeling and Simulation of Mg AZ80 Alloy Forging Behaviour

2008-04-14
2008-01-0214
Magnesium AZ80 is a medium strength alloy with good corrosion resistance and very good forging capability which offers an affordable commercial alternative to the Mg ZK60 alloy used for wheels in racing cars. Extending the market of Mg AZ80 alloy to automotive wheels requires a better understanding of macro- and micro-properties of this structural material, especially its forging behaviour. In this study the deformation behaviour of Mg AZ80 alloy is characterized by uniaxial compression tests from ambient to 420°C at a variety of strain rates using a Gleeble 1500 simulator. A constitutive relationship coupling materials work hardening and strain rate and temperature dependences is calibrated based on test results. This flow behaviour is input into a finite element model to simulate the forging operation of an automotive wheel with ABAQUS codes.
Technical Paper

A New Method for the Investigation of Unburned Oil Emissions in the Raw Exhaust of SI Engines

1998-10-19
982438
The study of oil emission is of essential interest for the engine development of modern cars, as well as for the understanding of hydrocarbon emissions especially during cold start conditions. A laser mass spectrometer has been used to measure single aromatic hydrocarbons in unconditioned exhaust gas of a H2-fueled engine at stationary and transient motor operation. These compounds represent unburned oil constituents. The measurements were accompanied by FID and GC-FID measurements of hydrocarbons which represent the burned oil constituents. The total oil consumption has been determined by measuring the oil sampled by freezing and weighing. It has been concluded that only 10 % of the oil consumption via exhaust gas has burned in the cylinders. A correlation of the emission of single oil-based components at ppb level detected with the laser mass spectrometer to the total motor oil emission has been found.
Technical Paper

Neutron Radiography Study of Diesel Engine Exhaust Soot Depositions in a Exhaust Pipe With and Without Water Coolant

2009-04-20
2009-01-1533
An investigation was performed to study the soot deposition and its effect on heat transfer in a cooled cylindrical section. The soot layer thickness was measured using a non-destructive neutron radiography technique. Experiments were performed for a diesel exhaust mass flow rate of 20kg/hr or Reynolds number of approximately 9,000, initial inlet coolant temperatures of approximately 22 and 40°C, and exposure times from 1 to 3 hours. The results show that the nominal soot layer thickness was approximately uniform in the flow direction, hence, the thicker soot layer observed near the entrance by Ismail et al. [8] and de la Cruz et al. [9] was due to entrance effects. The deposited soot layer shows evidence of long wavy thickness variations that appears to be due to a soot re-entrainment and re-deposition moving bed type mechanism. The soot thickness increased and the long wavy variations persisted for larger soot thicknesses when the coolant temperature or wall temperature was lower.
Technical Paper

Software tools and methods for the practice-oriented PDM integration of design and diagnostics of mechatronic systems in vehicles

2000-06-12
2000-05-0114
a practice-oriented approach for an accelerated product development and product design process for mechatronic systems is presented. The handling of complex and versatile product data to perform this process is shown in the area of electrical drives and actuators in cars. It is discussed, how the coordination of all the necessary disciplines as development, design, testing field, specification and release management should be software supported and PDM integrated. The advantages and benefits of the presented methods are shown on particular examples. The necessary software modules are introduced, showing that the realized solution gives both opportunities - the integration into a PDM backbone and at the same time an independent communication within department and/or company. The practical way, to realize the expert-specific needs of the development department, which is not possible with a general PDM system is pointed out.
X