Refine Your Search

Topic

Author

Search Results

Journal Article

Numerical Investigation of Laminar Flame Speed of Gasoline - Ethanol/Air Mixtures with Varying Pressure, Temperature and Dilution

2010-04-12
2010-01-0620
A numerical analysis was performed to study the variation of the laminar burning speed of gasoline-ethanol blend, pressure, temperature and dilution using the one-dimensional premixed flame code CHEMKIN™. A semi-detailed validated chemical kinetic model (142 species and 672 reactions) for a gasoline surrogate fuel was used. The pure components in the surrogate fuel consist of n-heptane, isooctane and toluene. The ethanol mole fraction was varied from 0 to 85 percent, initial pressure from 4 to 8 bar, initial temperature from 300 to 600K, and the EGR dilution from 0 to 32% to represent the in-cylinder conditions of a spark-ignition engine. The laminar flame speed is found to increase with ethanol concentration and temperature but decrease with pressure and dilution.
Journal Article

A Novel Singular Perturbation Technique for Model-Based Control of Cold Start Hydrocarbon Emission

2014-04-01
2014-01-1547
High hydrocarbon (HC) emission during a cold start still remains one of the major emission control challenges for spark ignition (SI) engines in spite of about three decades of research in this area. This paper proposes a cold start HC emission control strategy based on a reduced order modeling technique. A novel singular perturbation approximation (SPA) technique, based on the balanced realization principle, is developed for a nonlinear experimentally validated cold start emission model. The SPA reduced model is then utilized in the design of a model-based sliding mode controller (SMC). The controller targets to reduce cumulative tailpipe HC emission using a combination of fuel injection, spark timing, and air throttle / idle speed controls. The results from the designed multi-input multi-output (MIMO) reduced order SMC are compared with those from a full order SMC. The results show the reduced SMC outperforms the full order SMC by reducing both engine-out and tailpipe HC emission.
Journal Article

Characteristics of Formaldehyde (CH2O) Formation in Dimethyl Ether (DME) Spray Combustion Using PLIF Imaging

2016-04-05
2016-01-0864
Recognition of Dimethyl Ether (DME) as an alternative fuel has been growing recently due to its fast evaporation and ignition in application of compression-ignition engine. Most importantly, combustion of DME produces almost no particulate matter (PM). The current study provides a further understanding of the combustion process in DME reacting spray via experiment done in a constant volume combustion chamber. Formaldehyde (CH2O), an important intermediate species in hydrocarbon combustion, has received much attention in research due to its unique contribution in chemical pathway that leads to the combustion and emission of fuels. Studies in other literature considered CH2O as a marker for UHC species since it is formed prior to diffusion flame. In this study, the formation of CH2O was highlighted both temporally and spatially through planar laser induced fluorescence (PLIF) imaging at wavelength of 355-nm of an Nd:YAG laser at various time after start of injection (ASOI).
Technical Paper

The Performance of a Spark-Ignited Stratified-Charge Two Stroke Engine Operating on a Kerosine Based Aviation Fuel

1997-09-08
972737
This study examines the feasibility of broadening the fuel capabilities of a direct-injected two-stroke engine with stratified combustion. A three cylinder, direct-injected two-stroke engine was modified to operate on JP-5, a kerosene-based jet fuel that is heavier, more viscous, and less volatile than gasoline. Demonstration of engine operation with such a fuel after appropriate design modifications would significantly enhance the utilization of this engine in a variety of applications. Results have indicated that the performance characteristics of this engine with jet fuel are similar to that of gasoline with respect to torque and power output at low speeds and loads, but the engine's performance is hampered at the higher speeds and loads by the occurrence of knock.
Technical Paper

Optimization of Engine Control Strategies During Transient Processes Combining 1-D and 3-D Approaches

2010-04-12
2010-01-0783
One-dimensional simulation methods for unsteady (transient) engine operations have been developed and published in previous studies. These 1-D methods utilize heat release and emissions results obtained from 3-D CFD simulations which are stored in a data library. The goal of this study is to improve the 1-D methodology by optimizing the control strategies. Also, additional independent parameters are introduced to extend the 3-D data library, while, as in the previous studies, the number of interpolation points for each parameter remains small. The data points for the 3-D simulations are selected in the vicinity of the expected trajectories obtained from the independent parameter changes, as predicted by the transient 1-D simulations. By this approach, the number of time-consuming 3-D simulations is limited to a reasonable amount.
Technical Paper

The Effects of Oxygenated Biofuel on Intake Oxygen Concentration, EGR, and Performance of a 1.9L Diesel Engine

2010-04-12
2010-01-0868
Exhaust gas recirculation (EGR) has been employed in a diesel engine to reduce NOx emissions by diluting the fresh air charge with gases composed of primarily N2, CO2, H2O, and O2 from the engines exhaust stream. The addition of EGR reduces the production of NOx by lowering the peak cylinder gas temperature and reducing the concentration of O2 molecules, both of which contribute to the NOx formation mechanism. The amount of EGR has been typically controlled using an open loop control strategy where the flow of EGR was calibrated to the engine speed and load and controlled by the combination of an EGR valve and the ratio of the boost and exhaust back pressures. When oxygenated biofuels with lower specific energy are used, the engine control unit (ECU) will demand a higher fuel rate to maintain power output, which can alter the volumetric flow rate of EGR. In addition, oxygenated biofuels affect the oxygen concentration in the intake manifold gas stream.
Technical Paper

A Computational Investigation of Hydrotreated Vegetable Oil Sprays Using RANS and a Modified Version of the RNG k - ε Model in OpenFOAM

2010-04-12
2010-01-0739
Hydrotreated vegetable oil (HVO) is a high-cetane number alternative fuel with the potential of drastic emissions reductions in high-pressure diesel engines. In this study the behavior of HVO sprays is investigated computationally and compared with conventional diesel fuel sprays. The simulations are performed with a modified version of the C++ open source code OpenFOAM using Reynolds-averaged conservation equations for mass, species, momentum and energy. The turbulence has been modeled with a modified version of the RNG k-ε model. In particular, the turbulence interaction between the droplets and the gas has been accounted for by introducing appropriate source terms in the turbulence model equations. The spray simulations reflect the setup of the constant-volume combustion cell from which the experimental data were obtained.
Technical Paper

A Study of the Effect of a Catalyzed Particulate Filter on the Emissions from a Heavy-Duty Diesel Engine with EGR

2001-03-05
2001-01-0910
The effects of a catalyzed particulate filter (CPF) and Exhaust Gas Recirculation (EGR) on heavy-duty diesel engine emissions were studied in this research. EGR is used to reduce the NOx emissions but at the same time it can increase total particulate matter (TPM) emissions. CPF is technology available for retrofitting existing vehicles in the field to reduce the TPM emissions. A conventional low sulfur fuel (371 ppm S) was used in all the engine runs. Steady-state loading and regeneration experiments were performed with CPF I to determine its performance with respect to pressure drop and particulate mass characteristics at different engine operating conditions. From the dilution tunnel emission characterization results for CPF II, at Mode 11 condition (25% load - 311 Nm, 1800 rpm), the TPM, HC and vapor phase emissions (XOC) were decreased by 70%, 62% and 62% respectively downstream of the CPF II.
Technical Paper

Comparing Single-Step and Multi-Step Chemistry Using The Laminar and Turbulent Characteristic Time Combustion Model In Two Diesel Engines

2002-05-06
2002-01-1749
Three-dimensional diesel engine combustion simulations with single-step chemistry have been compared with two-step and three-step chemistry by means of the Laminar and Turbulent Characteristic Time Combustion model using the Star-CD program. The second reaction describes the oxidation of CO and the third reaction describes the combustion of H2. The comparisons have been performed for two heavy-duty diesel engines. The two-step chemistry was investigated for a purely kinetically controlled, for a mixing limited and for a combination of kinetically and mixing limited oxidation. For the latter case, two different descriptions of the laminar reaction rates were also tested. The best agreement with the experimental cylinder pressure has been achieved with the three-step mechanism but the differences with respect to the two-step and single-step reactions were small.
Technical Paper

Relating Integral Length Scale to Turbulent Time Scale and Comparing k-ε and RNG k-ε Turbulence Models in Diesel Combustion Simulation

2002-03-04
2002-01-1117
A modified version of the Laminar and Turbulent Characteristic Time combustion model and the Hiroyasu-Magnussen soot model have been implemented in the flow solver Star-CD. Combustion simulations of three DI diesel engines, utilizing the standard k-ε turbulence model and a modified version of the RNG k-ε turbulence model, have been performed and evaluated with respect to combustion performance and emissions. Adjustments of the turbulent characteristic combustion time coefficient, which were necessary to match the experimental cylinder peak pressures of the different engines, have been justified in terms of non-equilibrium turbulence considerations. The results confirm the existence of a correlation between the integral length scale and the turbulent time scale. This correlation can be used to predict the combustion time scale in different engines.
Technical Paper

The Influence of an Oxidation Catalytic Converter and Fuel Composition on the Chemical and Biological Characteristics of Diesel Exhaust Emissions

1992-02-01
920854
The U.S. Bureau of Mines and Michigan Technological University are collaborating to conduct laboratory evaluations of oxidation catalytic converters (OCCs) and diesel fuels to identify combinations which minimize potentially harmful emissions. The purpose is to provide technical information concerning diesel exhaust emission control to the mining industry, regulators, and vendors of fuel and emission control devices. In this study, an Engelhard PTX 10 DVC (Ultra-10)* OCC was evaluated in the exhaust stream of an indirect injection Caterpillar 3304 PCNA mining engine using a light-duty laboratory transient cycle. This cycle was selected because it causes high emissions of particle-associated organics. Results are also reported for two different fuels with similar sulfur contents (0.03-0.04 wt pct) and a cetane number of 53, but different aromatic contents (11 vs. 20 wt pct).
Technical Paper

Innovative Exergy-Based Combustion Phasing Control of IC Engines

2016-04-05
2016-01-0815
Exergy or availability is the potential of a system to do work. In this paper, an innovative exergy-based control approach is presented for Internal Combustion Engines (ICEs). An exergy model is developed for a Homogeneous Charge Compression Ignition (HCCI) engine. The exergy model is based on quantification of the Second Law of Thermodynamic (SLT) and irreversibilities which are not identified in commonly used First Law of Thermodynamics (FLT) analysis. An experimental data set for 175 different ICE operating conditions is used to construct the SLT efficiency maps. Depending on the application, two different SLT efficiency maps are generated including the applications in which work is the desired output, and the applications where Combined Power and Exhaust Exergy (CPEX) is the desired output. The sources of irreversibility and exergy loss are identified for a single cylinder Ricardo HCCI engine.
Technical Paper

Two-Input Two-Output Control of Blended Fuel HCCI Engines

2013-04-08
2013-01-1663
Precise cycle-to-cycle control of combustion is the major challenge to reduce fuel consumption in Homogenous Charge Compression Ignition (HCCI) engines, while maintaining low emission levels. This paper outlines a framework for simultaneous control of HCCI combustion phasing and Indicated Mean Effective Pressure (IMEP) on a cycle-to-cycle basis. A dynamic control model is extended to predict behavior of HCCI engine by capturing main physical processes through an HCCI engine cycle. Performance of the model is validated by comparison with the experimental data from a single cylinder Ricardo engine. For 60 different steady state and transient HCCI conditions, the model predicts the combustion phasing and IMEP with average errors less than 1.4 CAD and 0.2 bar respectively. A two-input two-output controller is designed to control combustion phasing and IMEP by adjusting fuel equivalence ratio and blending ratio of two Primary Reference Fuels (PRFs).
Technical Paper

A Study of the Effects of Exhaust Gas Recirculation on Heavy-Duty Diesel Engine Emissions

1998-05-04
981422
The effects of exhaust gas recirculation (EGR) on heavy-duty diesel emissions were studied at two EPA steady-state operating conditions, old EPA mode 9* (1800 RPM, 75% Load) and old EPA mode 11 (1800 RPM, 25% Load). Data were collected at the baseline, 10% and 16% EGR rates for both EPA modes. The study was conducted using a 1995 Cummins M11-330E heavy-duty diesel engine and compared to the baseline emissions from the Cummins 1988 and 1991 L10 engines. The baseline gas-, vapor- and particle-phase emissions were measured together with the particle size distributions at all modes of operation. The total particulate matter (TPM) and vapor phase (XOC) samples were analyzed for physical, chemical and biological properties. The results showed that newer engines with electronic engine controls and higher injector pressures produce TPM decreases from the 1988 to 1991 to 1995 engines with the solids decreasing more than the soluble organic fraction (SOF) of TPM.
Technical Paper

Evaluation and Application of a Portable Tailpipe Emissions Measurement Apparatus for Field Use

1992-09-01
921647
This paper discusses the evaluation and application of a portable parked-vehicle tailpipe emissions measurement apparatus (EMA). The EMA consists of an exhaust dilution system and a portable instrument package. The EMA instantaneously dilutes and cools a sample of exhaust with compressed nitrogen or air at a known dilution ratio, thereby presenting it to instruments as it is presented to personnel in the surrounding environment. The operating principles and governing equations of the EMA are presented. A computational method is presented to determine the engine operating and performance parameters from the exhaust CO2 concentrations along with an assumed engine overall volumetric efficiency and brake specific fuel consumption. The parameters determined are fuel/air ratio, mass flow rates of fuel, air and exhaust emissions, and engine brake torque and horsepower.
Technical Paper

A Review of Diesel Particulate Control Technology and Emissions Effects - 1992 Horning Memorial Award Lecture

1994-03-01
940233
Studies have been conducted at Michigan Technological University (MTU) for over twenty years on methods for characterizing and controlling particulate emissions from heavy-duty diesel engines and the resulting effects on regulated and unregulated emissions. During that time, control technologies have developed in response to more stringent EPA standards for diesel emissions. This paper is a review of: 1) modern emission control technologies, 2) emissions sampling and chemical, physical and biological characterization methods and 3) summary results from recent studies conducted at MTU on heavy-duty diesel engines with a trap and an oxidation catalytic converter (OCC) operated on three different fuels. Control technology developments discussed are particulate traps, catalysts, advances in engine design, the application of exhaust gas recirculation (EGR), and modifications of fuel formulations.
Technical Paper

Modeling of Early Pressure Rise and Flame Growth in a Spark Ignition Engine

1994-10-01
941930
A thermodynamical model of the ignition and flame growth process was developed to understand and minimize cycle-to-cycle variations in pressure due to minor differences in flame kernel growth at the spark plug electrode between cycles. Initial flame kernel size after the spark breakdown process was determined by solving the one-dimensional cylindrical shock flow equation. Overall reaction rates, flame speeds including turbulence and intensity, high temperature equilibrium and other thermodynamic properties were calculated by peripheral sub-models. Relative effects of spark power, heat loss to the spark plug, and the chemical heat release were studied under varying engine conditions. Results show that breakdown energy has a significant effect on the formation and size of the initial kernel and that the effect of flame kernel velocity on subsequent combustion was considerable at specific engine conditions.
Technical Paper

Effects of a Ceramic Particle Trap and Copper Fuel Additive on Heavy-Duty Diesel Emissions

1994-10-01
942068
This research quantifies the effects of a copper fuel additive on the regulated [oxides of nitrogen (NOx), hydrocarbons (HC) and total particulate matter (TPM)] and unregulated emissions [soluble organic fraction (SOF), vapor phase organics (XOC), polynuclear aromatic hydrocarbons (PAH), nitro-PAH, particle size distributions and mutagenic activity] from a 1988 Cummins LTA10 diesel engine using a low sulfur fuel. The engine was operated at two steady state modes (EPA modes 9 and 11, which are 75 and 25% load at rated speed, respectively) and five additive levels (0, 15, 30, 60 and 100 ppm Cu by mass) with and without a ceramic trap. Measurements of PAH and mutagenic activity were limited to the 0, 30 and 60 ppm Cu levels. Data were also collected to assess the effect of the additive on regeneration temperature and duration. Copper species collected within the trap were identified and exhaust copper concentrations quantified.
Technical Paper

Catalytic Oxidation Model Development of the Volatile Reactor Assembly Unit of the International Space Station Water Processor

1995-07-01
951630
The destruction of organic contaminants in waste water for closed systems, such as that of the International Space Station, is crucial due to the need for recycling the waste water. A cocurrent upflow bubble column using oxygen as the gas phase oxidant and packed with catalyst particles consisting of a noble metal on an alumina substrate is being developed for this process. This paper addresses the development of a plug-flow model that will predict the performance of this three phase reactor system in destroying a multicomponent mixture of organic contaminants in water. Mass balances on a series of contaminants and oxygen in both the liquid and gas phases are used to develop this model. These mass balances incorporate the gas-to-liquid and liquid-to-particle mass transfer coefficients, the catalyst effectiveness factor, and intrinsic reaction rate.
Technical Paper

Automated Radiation Modeling for Vehicle Thermal Management

1995-02-01
950615
A fast, semi-automated method for visualizing the time-varying effects of radiative heat transfer, including obscuration and multiple reflections, is presented. Starting with a finite element surface description, an analyst assigns “groups” to a model by indicating which elements have the same material and surface properties. The elements within each group are combined into isothermal nodes. View factors are then calculated using a variant of the hemi-cube method. Transient nodal temperatures are calculated using an implicit solution to the finite difference equations derived from the thermal properties of each node and the radiation exchange between nodes.
X