Refine Your Search

Topic

Author

Search Results

Journal Article

Analysis of Residual Stress Profiles in the Cylinder Web Region of an As-Cast V6 Al Engine Block with Cast-In Fe Liners Using Neutron Diffraction

2011-04-12
2011-01-0036
Continuous efforts to develop a lightweight alloy suitable for the most demanding applications in automotive industry resulted in a number of advanced aluminum (Al) and magnesium alloys and manufacturing routes. One example of this is the application of 319 Al alloy for production of 3.6L V6 gasoline engine blocks. Aluminum is sand cast around Fe-liner cylinder inserts, prior to undergoing the T7 heat treatment process. One of the critical factors determining the quality of the final product is the type, level, and profile of residual stresses along the Fe liners (or extent of liner distortion) that are always present in a cast component. In this study, neutron diffraction was used to characterize residual stresses along the Al and the Fe liners in the web region of the cast engine block. The strains were measured both in Al and Fe in hoop, radial, and axial orientations. The stresses were subsequently determined using generalized Hooke's law.
Journal Article

Measurement of Diesel Spray Formation and Combustion upon Different Nozzle Geometry using Hybrid Imaging Technique

2014-04-01
2014-01-1410
High pressure diesel sprays were visualized under vaporizing and combusting conditions in a constant-volume combustion vessel. Near-simultaneous visualization of vapor and liquid phase fuel distribution were acquired using a hybrid shadowgraph/Mie-scattering imaging setup. This imaging technique used two pulsed LED's operating in an alternative manner to provide proper light sources for both shadowgraph and Mie scattering. In addition, combustion cases under the same ambient conditions were visualized through high-speed combustion luminosity measurement. Two single-hole diesel injectors with same nozzle diameters (100μm) but different k-factors (k0 and k1.5) were tested in this study. Detailed analysis based on spray penetration rate curves, rate of injection measurements, combustion indicators and 1D model comparison have been performed.
Journal Article

Reduction of Steady-State CFD HVAC Simulations into a Fully Transient Lumped Parameter Network

2014-05-10
2014-01-9121
Since transient vehicle HVAC computational fluids (CFD) simulations take too long to solve in a production environment, the goal of this project is to automatically create a lumped-parameter flow network from a steady-state CFD that solves nearly instantaneously. The data mining algorithm k-means is implemented to automatically discover flow features and form the network (a reduced order model). The lumped-parameter network is implemented in the commercial thermal solver MuSES to then run as a fully transient simulation. Using this network a “localized heat transfer coefficient” is shown to be an improvement over existing techniques. Also, it was found that the use of the clustering created a new flow visualization technique. Finally, fixing clusters near equipment newly demonstrates a capability to track localized temperatures near specific objects (such as equipment in vehicles).
Journal Article

Electric Drive Transient Behavior Modeling: Comparison of Steady State Map Based Offline Simulation and Hardware-in-the-Loop Testing

2017-03-28
2017-01-1605
Electric drives, whether in battery electric vehicles (BEVs) or various other applications, are an important part of modern transportation. Traditionally, physics-based models based on steady-state mapping of electric drives have been used to evaluate their behavior under transient conditions. Hardware-in-the-Loop (HIL) testing seeks to provide a more accurate representation of a component’s behavior under transient load conditions that are more representative of real world conditions it will operate under, without requiring a full vehicle installation. Oak Ridge National Laboratory (ORNL) developed such a HIL test platform capable of subjecting electric drives to both conventional steady-state test procedures as well as transient experiments such as vehicle drive cycles.
Technical Paper

Mobile Robot Localization Evaluations with Visual Odometry in Varying Environments Using Festo-Robotino

2020-04-14
2020-01-1022
Autonomous ground vehicles can use a variety of techniques to navigate the environment and deduce their motion and location from sensory inputs. Visual Odometry can provide a means for an autonomous vehicle to gain orientation and position information from camera images recording frames as the vehicle moves. This is especially useful when global positioning system (GPS) information is unavailable, or wheel encoder measurements are unreliable. Feature-based visual odometry algorithms extract corner points from image frames, thus detecting patterns of feature point movement over time. From this information, it is possible to estimate the camera, i.e., the vehicle’s motion. Visual odometry has its own set of challenges, such as detecting an insufficient number of points, poor camera setup, and fast passing objects interrupting the scene. This paper investigates the effects of various disturbances on visual odometry.
Journal Article

Combustion Studies with FACE Diesel Fuels: A Literature Review

2012-09-10
2012-01-1688
The CRC Fuels for Advanced Combustion Engines (FACE) Working Group has provided a matrix of experimental diesel fuels for use in studies on the effects of three parameters, Cetane number (CN), aromatics content, and 90 vol% distillation temperature (T90), on combustion and emissions characteristics of advanced combustion strategies. Various types of fuel analyses and engine experiments were performed in well-known research institutes. This paper reviews a collection of research findings obtained with these nine fuels. An extensive collection of analyses were performed by members of the FACE working group on the FACE diesel fuels as a means of aiding in understanding the linkage between fuel properties and combustion and emissions performance. These analyses included non-traditional chemical techniques as well as established ASTM tests. In a few cases, both ASTM tests and advanced analyses agreed that some design variables differed from their target values when the fuels were produced.
Technical Paper

Effects of Silicon and Boron Additions on the Susceptibility to Quench Embrittlement and the Bending Fatigue Performance of Vacuum Carburized Modified 4320 Steel

2007-04-16
2007-01-1005
The effect of B and Si additions on fracture and fatigue performance of vacuum carburized 4320 steel and modifications of 4320 steel containing additions of Si (1.0 and 2.0 wt pct) and B (0 and 17 ppm) was evaluated by bending fatigue testing. Three rates of gas quenching, in 10 bar nitrogen and 15 and 20 bar helium, were used to cool specimens after carburizing. The B, protected by Ti additions, together with the Si additions, increased core hardenability. The B/Si modified steels showed no improvement in fatigue resistance, as measured by endurance limits established by 10 million cycle runouts without fracture. However, scanning electron microscopy showed that Si reduced sensitivity to intergranular fracture or quench embrittlement, a major cause of bending fatigue crack initiation, and contributed to variable fatigue performance, with both low-cycle failures and runout performance at applied stresses significantly above measured endurance limits.
Technical Paper

Catalysis by Design - Theoretical and Experimental Studies of Model Catalysts

2007-04-16
2007-01-1018
The development of new catalytic materials is still dominated by trial and error methods, even though the experimental and theoretical bases for their characterization have improved dramatically in recent years. Although it has been successful, the empirical development of catalytic materials is time consuming and expensive with no guarantee of success. We have been exploring computationally complex but experimentally simple systems to establish a “catalysis by design” protocol that combines the power of theory and experiment. We hope to translate the fundamental insights directly into a complete catalyst system that is technologically relevant. The essential component of this approach is that the catalysts are iteratively examined by both theoretical and experimental methods.
Technical Paper

Diesel Particulate Oxidation Model: Combined Effects of Volatiles and Fixed Carbon Combustion

2010-10-25
2010-01-2127
Diesel particulate samples were collected from a light duty engine operated at a single speed-load point with a range of biodiesel and conventional fuel blends. The oxidation reactivity of the samples was characterized in a laboratory reactor, and BET surface area measurements were made at several points during oxidation of the fixed carbon component of both types of particulate. The fixed carbon component of biodiesel particulate has a significantly higher surface area for the initial stages of oxidation, but the surface areas for the two particulates become similar as fixed carbon oxidation proceeds beyond 40%. When fixed carbon oxidation rates are normalized to total surface area, it is possible to describe the oxidation rates of the fixed carbon portion of both types of particulates with a single set of Arrhenius parameters. The measured surface area evolution during particle oxidation was found to be inconsistent with shrinking sphere oxidation.
Technical Paper

Material Damping Properties: A Comparison of Laboratory Test Methods and the Relationship to In-Vehicle Performance

2001-04-30
2001-01-1466
This paper presents the damping effectiveness of free-layer damping materials through standard Oberst bar testing, solid plate excitation (RTC3) testing, and prediction through numerical schemes. The main objective is to compare damping results from various industry test methods to performance in an automotive body structure. Existing literature on laboratory and vehicle testing of free-layer viscoelastic damping materials has received significant attention in recent history. This has created considerable confusion regarding the appropriateness of different test methods to measure material properties for damping materials/treatments used in vehicles. The ability to use the material properties calculated in these tests in vehicle CAE models has not been extensively examined. Existing literature regarding theory and testing for different industry standard damping measurement techniques is discussed.
Technical Paper

Low-Order Map Approximations of Lean Cyclic Dispersion in Premixed Spark Ignition Engines

2001-09-24
2001-01-3559
We investigate lean-fueling cyclic dispersion in spark ignition engines in terms of experimental nonlinear mapping functions representing the connection between past and future combustion events. Nonlinear mapping functions provide a relatively easy method for identifying the deterministic dynamics associated with lean combustion instability, even in the presence of very high levels of noise. Observed experimental maps appear to have strong similarities to those predicted by an existing nonlinear spark ignition engine model. Differences between the observed map and model predictions become more pronounced at very lean fueling and high residual fraction. Map function details are shown to be useful in model validation, identifying model deficiencies, and comparing the characteristics of different engines. We expect that such maps will also be useful for developing real-time control strategies.
Technical Paper

Simulation of Non-Evaporating Diesel Sprays and Verification with Experimental Data

2002-03-04
2002-01-0946
Non-evaporating diesel sprays have been simulated utilizing the ETAB and the WAVE atomization and breakup models and have been compared with experimental data. The experimental penetrations and widths were determined from back-lit spray images and the droplet sizes have been measured by means of a Malvern particle sizer. The model evaluation criteria include the spray penetration, the spray width and the local droplet size. The comparisons have been performed for variations of the injection pressure, the gas density and the fuel viscosity. The fuel nozzle exit velocities used in the simulations have been computed with a special code that considers the effect of in-nozzle cavitation. The simulations showed good overall agreement with experimental data. However, the capabilities of the models to predict the droplet size for different fuels could be improved.
Technical Paper

The Use of Unique Time History Input Excitation in the Dynamic Characterization of Automotive Mounts

2003-05-05
2003-01-1463
The traditional method of dynamic characterization of elastomers used in industry has largely been based on sinusoidal input excitation. Discrete frequency sine wave signals at specified amplitudes are used to excite the elastomer in a step-sine sweep fashion. This paper will examine new methods of characterization using various broadband input excitations. These different inputs include continuous sine sweep (chirp), shaped random, and acquired road profile data. Use of these broadband data types is expected to provide a more accurate representation of conditions seen in the field, while helping to eliminate much of the interpolation that is inherent with the classic discrete step-sine technique. Results of the various input types are compared in this paper with those found using the classic discrete step-sine input.
Technical Paper

Effect of Combustion on Diesel Spray Penetrations in Relation to Vaporizing, Non-Reacting Sprays

2016-10-17
2016-01-2201
Extensive studies have addressed diesel sprays under non-vaporizing, vaporizing and combusting conditions respectively, but further insights into the mechanism by which combustion alters the macroscopic characteristics including the spray penetration and the shape of the spray under diesel engine conditions are needed. Contradictory observations are reported in the literature regarding the combusting diesel spray penetration compared to the inert conditions, and it is an objective of this study to provide further insights and analyses on the combusting spray characteristics by expanding the range of operating parameters. Parameters varied in the studies are charge gas conditions including oxygen levels of 0 %, 15%, 19%, charge densities of 22.8 & 34.8 kg/m3, and charge temperatures of 800, 900 & 1050 K for injection pressures of 1200, 1500, and 1800 bar with a single-hole injector with a nozzle diameter of 100 μm.
Technical Paper

Axial NO2 Utilization Measurements within a Partial Flow Filter during Passive Regeneration

2017-03-28
2017-01-0988
Measuring axial exhaust species concentration distributions within a wall-flow aftertreatment device provides unique and significant insights regarding the performance of complex devices like the SCR-on-filter. In this particular study, a less complex aftertreatment configuration which includes a DOC followed by two uncoated partial flow filters (PFF) was used to demonstrate the potential and challenges. The PFF design in this study was a particulate filter with alternating open and plugged channels. A SpaciMS [1] instrument was used to measure the axial NO2 profiles within adjacent open and plugged channels of each filter element during an extended passive regeneration event using a full-scale engine and catalyst system. By estimating the mass flow through the open and plugged channels, the axial soot load profile history could be assessed.
Technical Paper

Splashing Criterion and Topological Features of a Single Droplet Impinging on the Flat Plate

2018-04-03
2018-01-0289
This paper aims to provide the experimental and numerical investigation of a single fuel droplet impingement on the different wall conditions to understand the detailed impinging dynamic process. The experimental work was carried out at the room temperature and pressure except for the variation of the impinged wall temperature. A high-speed camera was employed to capture the silhouette of the droplet impinging on wall process against a collimated light. Water, diesel, n-dodecane, and n-heptane were considered as four different droplets and injected from a precision syringe pump with the volume flow rate of 0.2 mL/min at various impact Weber numbers. The impingement outcomes after droplet impacting on the wall include stick, spread, rebound and splash, which depend on the controlling parameters of Weber number, Reynolds number, liquid and surface properties, etc.
Technical Paper

Non-Destructive Measurement of Residual Strain in Connecting Rods Using Neutrons

2018-04-03
2018-01-1063
Increasing the strength of materials is effective in reducing weight and boosting structural part performance, but there are cases in where the residual strain generated during the process of manufacturing of high-strength materials results in a decline of durability. It is therefore important to understand how the residual strain in a manufactured component changes due to processing conditions. In the case of a connecting rod, because the strain load on the connecting rod rib sections is high, it is necessary to clearly understand the distribution of strain in the ribs. However, because residual strain is generally measured by using X-ray diffractometers or strain gauges, measurements are limited to the surface layer of the parts. Neutron beams, however, have a higher penetration depth than X-rays, allowing for strain measurement in the bulk material.
Technical Paper

Correlations of Non-Vaporizing Spray Penetration for 3000 Bar Diesel Spray Injection

2013-09-08
2013-24-0033
Increasing fuel injection pressure has enabled reduction of diesel emissions while retaining the advantage of the high thermal efficiency of diesel engines. With production diesel injectors operating in the range from 300 to 2400 bar, there is interest in injection pressures of 3000 bar and higher for further emissions reduction and fuel efficiency improvements. Fundamental understanding of diesel spray characteristics including very early injection and non-vaporizing spray penetration is essential to improve model development and facilitate the integration of advanced injection systems with elevated injection pressure into future diesel engines. Studies were conducted in an optically accessible constant volume combustion vessel under non-vaporizing conditions. Two advanced high pressure multi-hole injectors were used with different hole diameters, number of holes, and flow rates, with only one plume of each injector being imaged to enable high frame rate imaging.
Technical Paper

Influence of the Nozzle Geometry of a Diesel Single-Hole Injector on Liquid and Vapor Phase Distributions at Engine-Like Conditions

2013-09-08
2013-24-0038
The paper describes an experimental activity on the spatial and temporal liquid- and vapor-phase distributions of diesel fuel at engine-like conditions. The influence of the k-factor (0 and 1.5) of a single-hole axial-disposed injector (0.100 mm diameter and 10 L/d ratio) has been studied by spraying fuel in an optically-accessible constant-volume combustion vessel. A high-speed imaging system, capable of acquiring Mie-scattering and Schlieren images in a near simultaneous fashion mode along the same line of sight, has been developed at the Michigan Technological University using a high-speed camera and a pulsed-wave LED system. The time resolved pair of schlieren and Mie-scattering images identifies the instantaneous position of both the vapor and liquid phases of the fuel spray, respectively. The studies have been performed at three injection pressures (70, 120 and 180 MPa), 23.9 kg/m3 ambient gas density and 900 K gas temperature in the vessel.
Technical Paper

Drawbeads in Sheet Metal Stamping - A Review

1997-02-24
970986
The paper reviews the role of drawbeads in sheet metal stamping. The design of drawbeads is discussed in depth, with treatment of different bead cross sections, bead end shapes, and bead materials. International standards and practices are included. This is followed by the historical development of the modeling of the drawbead restraining force, starting with basic equilibrium approaches, and leading to the use of the finite element method which permits the study of drawbead effects on sheet metal flow in three dimensions. Finally, the potential of active drawbeads is described based upon ongoing research which is directed toward closed-loop computer control of the stamping process through adjustment of the drawbead penetration.
X