Refine Your Search

Topic

Author

Affiliation

Search Results

Video

Catalyzed Particulate Filter Passive Oxidation Study with ULSD and Biodiesel Blended Fuel

2012-06-18
The development of PM and NOx reduction system with the combination of DOC included DPF and SCR catalyst in addition to the AOC sub-assembly for NH3 slip protection is described. DPF regeneration strategy and manual regeneration functionality are introduced with using ITH, HCI device on the EUI based EGR, VGT 12.3L diesel engine at the CVS full dilution tunnel test bench. With this system, PM and NOx emission regulation for JPNL was satisfied and DPF regeneration process under steady state condition and transient condition (JE05 mode) were successfully fulfilled. Manual regeneration process was also confirmed and HCI control strategy was validated against the heat loss during transient regeneration mode. Presenter Seung-il Moon
Journal Article

1D Thermo-Fluid Dynamic Modeling of Reacting Flows inside Three-Way Catalytic Converters

2009-04-20
2009-01-1510
In this work a detailed model to simulate the transient behavior of catalytic converters is presented. The model is able to predict the unsteady and reacting flows in the exhaust ducts, by solving the system of conservation equations of mass, momentum, energy and transport of reacting chemical species. The en-gine and the intake system have not been included in the simulation, imposing the measured values of mass flow, gas temperature and chemical composition as a boundary condition at the inlet of the exhaust system. A detailed analysis of the diffusion stage triggering is proposed along with simplifications of the physics, finalized to the reduction of the calculation time. Submodels for water condensation and its following evaporation on the monolith surface have been taken into account as well as oxygen storage promoted by ceria oxides.
Journal Article

CO Emission Model for an Integrated Diesel Engine, Emissions, and Exhaust Aftertreatment System Level Model

2009-04-20
2009-01-1511
A kinetic carbon monoxide (CO) emission model is developed to simulate engine out CO emissions for conventional diesel combustion. The model also incorporates physics governing CO emissions for low temperature combustion (LTC). The emission model will be used in an integrated system level model to simulate the operation and interaction of conventional and low temperature diesel combustion with aftertreatment devices. The Integrated System Model consists of component models for the diesel engine, engine-out emissions (such as NOx and Particulate Matter), and aftertreatment devices (such as DOC and DPF). The addition of CO emissions model will enhance the capability of the Integrated System Model to predict major emission species, especially for low temperature combustion. In this work a CO emission model is developed based on a two-step global kinetic mechanism [8].
Journal Article

Effect of Mesh Structure in the KIVA-4 Code with a Less Mesh Dependent Spray Model for DI Diesel Engine Simulations

2009-06-15
2009-01-1937
Two different types of mesh used for diesel combustion with the KIVA-4 code are compared. One is a well established conventional KIVA-3 type polar mesh. The other is a non-polar mesh with uniform size throughout the piston bowl so as to reduce the number of cells and to improve the quality of the cell shapes around the cylinder axis which can contain many fuel droplets that affect prediction accuracy and the computational time. This mesh is specialized for the KIVA-4 code which employs an unstructured mesh. To prevent dramatic changes in spray penetration caused by the difference in cell size between the two types of mesh, a recently developed spray model which reduces mesh dependency of the droplet behavior has been implemented. For the ignition and combustion models, the Shell model and characteristic time combustion (CTC) model are employed.
Journal Article

Realization of Ground Effects on Snowmobile Pass-by Noise Testing

2009-05-19
2009-01-2229
Noise concerns regarding snowmobiles have increased in the recent past. Current standards, such as SAE J192 are used as guidelines for government agencies and manufacturers to regulate noise emissions for all manufactured snowmobiles. Unfortunately, the test standards available today produce results with variability that is much higher than desired. The most significant contributor to the variation in noise measurements is the test surface. The test surfaces can either be snow or grass and affects the measurement in two very distinct ways: sound propagation from the source to the receiver and the operational behavior of the snowmobile. Data is presented for a known sound pressure speaker source and different snowmobiles on various test days and test surfaces. Relationships are shown between the behavior of the sound propagation and track interaction to the ground with the pass-by noise measurements.
Journal Article

Removal of NOx from Diesel Exhausts: The New “Enhanced NH3-SCR” Reaction

2010-04-12
2010-01-1181
Ammonia/urea-SCR is a mature technology, applied worldwide for the control of NOx emissions in combustion exhausts from thermal power plants, cogeneration units, incinerators and stationary diesel engines and more recently also from mobile sources. However a greater DeNOx activity at low temperatures is desired in order to meet more and more restrictive legislations. In this paper we report transient and steady state data collected over commercial Fe-ZSM-5 and V₂O₅-WO₃/TiO₂ catalysts showing high NOx reduction efficiencies in the 200 - 350°C T-range when NO and ammonia react with nitrates, e.g., in the form of an aqueous solution of ammonium nitrate. Under such conditions a new reaction occurs, the so-called "Enhanced SCR" reaction, 2 NH₃ + 2 NO + NH₄NO₃ → 3 N₂ + 5 H₂O.
Journal Article

Use of Low-Pressure Direct-Injection for Reactivity Controlled Compression Ignition (RCCI) Light-Duty Engine Operation

2013-04-08
2013-01-1605
Reactivity-controlled compression ignition (RCCI) has been shown to be capable of providing improved engine efficiencies coupled with the benefit of low emissions via in-cylinder fuel blending. Much of the previous body of work has studied the benefits of RCCI operation using high injection pressures (e.g., 500 bar or greater) with common rail injection (CRI) hardware. However, low-pressure fueling technology is capable of providing significant cost savings. Due to the broad market adoption of gasoline direct injection (GDI) fueling systems, a market-type prototype GDI injector was selected for this study. Single-cylinder light-duty engine experiments were undertaken to examine the performance and emissions characteristics of the RCCI combustion strategy with low-pressure GDI technology and compared against high injection pressure RCCI operation. Gasoline and diesel were used as the low-reactivity and high-reactivity fuels, respectively.
Journal Article

Data Driven Estimation of Exhaust Manifold Pressure by Use of In-cylinder Pressure Information

2013-04-08
2013-01-1749
Although the application of cylinder pressure sensors to gain insight into the combustion process is not a novel topic itself, the recent availability of inexpensive in-cylinder pressure sensors has again prompted an upcoming interest for the utilization of the cylinder pressure signal within engine control and monitoring. Besides the use of the in-cylinder pressure signal for combustion analysis and control the information can also be used to determine related quantities in the exhaust or intake manifold. Within this work two different methods to estimate the pressure inside the exhaust manifold are proposed and compared. In contrary to first principle based approaches, which may require time extensive parameterization, alternative data driven approaches were pursued. In the first method a Principle Component Analysis (PCA) is applied to extract the cylinder pressure information and combined with a polynomial model approach.
Journal Article

CO2 Reduction Potential through Improved Mechanical Efficiency of the Internal Combustion Engine: Technology Survey and Cost-Benefit Analysis

2013-04-08
2013-01-1740
The need for significant reduction of fuel consumption and CO₂ emissions has become the major driver for development of new vehicle powertrains today. For the medium term, the majority of new vehicles will retain an internal combustion engine (ICE) in some form. The ICE may be the sole prime mover, part of a hybrid powertrain or even a range extender; in every case potential still exists for improvement in mechanical efficiency of the engine itself, through reduction of friction and of parasitic losses for auxiliary components. A comprehensive approach to mechanical efficiency starts with an analysis of the main contributions to engine friction, based on a measurement database of a wide range of production engines. Thus the areas with the highest potential for improvement are identified. For each area, different measures for friction reduction may be applicable with differing benefits.
Journal Article

Measurement of Diesel Spray Formation and Combustion upon Different Nozzle Geometry using Hybrid Imaging Technique

2014-04-01
2014-01-1410
High pressure diesel sprays were visualized under vaporizing and combusting conditions in a constant-volume combustion vessel. Near-simultaneous visualization of vapor and liquid phase fuel distribution were acquired using a hybrid shadowgraph/Mie-scattering imaging setup. This imaging technique used two pulsed LED's operating in an alternative manner to provide proper light sources for both shadowgraph and Mie scattering. In addition, combustion cases under the same ambient conditions were visualized through high-speed combustion luminosity measurement. Two single-hole diesel injectors with same nozzle diameters (100μm) but different k-factors (k0 and k1.5) were tested in this study. Detailed analysis based on spray penetration rate curves, rate of injection measurements, combustion indicators and 1D model comparison have been performed.
Journal Article

Comprehensive Array Measurements of In-Car Sound Field in Magnitude and Phase for Active Sound Generation and Noise Control

2014-06-30
2014-01-2046
When employing in-car active sound generation (ASG) and active noise cancellation (ANC), the accurate knowledge of the vehicle interior sound pressure distribution in magnitude as well as phase is paramount. Revisiting the ANC concept, relevant boundary conditions in spatial sound fields will be addressed. Moreover, within this study the controllability and observability requirements in case of ASG and ANC were examined in detail. This investigation focuses on sound pressure measurements using a 24 channel microphone array at different heights near the head of the driver. A shaker at the firewall and four loudspeakers of an ordinary in-car sound system have been investigated in order to compare their sound fields. Measurements have been done for different numbers of passengers, with and without a dummy head and real person on the driver seat. Transfer functions have been determined with a log-swept sine technique.
Journal Article

Towards the Use of Eulerian Field PDF Methods for Combustion Modeling in IC Engines

2014-04-01
2014-01-1144
Detailed chemistry and turbulence-chemistry interaction need to be properly taken into account for a realistic combustion simulation of IC engines where advanced combustion modes, multiple injections and stratified combustion involve a wide range of combustion regimes and require a proper description of several phenomena such as auto-ignition, flame stabilization, diffusive combustion and lean premixed flame propagation. To this end, different approaches are applied and the most used ones rely on the well-stirred reactor or flamelet assumption. However, well-mixed models do not describe correctly flame structure, while unsteady flamelet models cannot easily predict premixed flame propagation and triple flames. A possible alternative for them is represented by transported probability density functions (PDF) methods, which have been applied widely and effectively for modeling turbulent reacting flows under a wide range of combustion regimes.
Journal Article

Integrated 1D/2D/3D Simulation of Fuel Injection and Nozzle Cavitation

2013-09-08
2013-24-0006
To promote advanced combustion strategies complying with stringent emission regulations of CI engines, computational models have to accurately predict the injector inner flow and cavitation development in the nozzle. This paper describes a coupled 1D/2D/3D modeling technique for the simulation of fuel flow and nozzle cavitation in diesel injection systems. The new technique comprises 1D fuel flow, 2D multi-body dynamics and 3D modeling of nozzle inner flow using a multi-fluid method. The 1D/2D model of the common rail injector is created with AVL software Boost-Hydsim. The computational mesh including the nozzle sac with spray holes is generated with AVL meshing tool Fame. 3D multi-phase calculations are performed with AVL software FIRE. The co-simulation procedure is controlled by Boost-Hydsim. Initially Hydsim performs a standalone 1D simulation until the needle lift reaches a prescribed tolerance (typically 2 to 5 μm).
Technical Paper

Numerical Assessment of an After-Treatment System Equipped with a Burner to Speed-Up the Light-Off during Engine Cold Start

2021-09-05
2021-24-0089
In the next years, the upcoming emission legislations are expected to introduce further restrictions on the admittable level of pollutants from vehicles measured on homologation cycles and real drive tests. In this context, the strict control of pollutant emissions at the cold start will become a crucial point to comply with the new regulation standards. This will necessarily require the implementation of novel strategies to speed-up the light-off of the reactions occurring in the after-treatment system, since the cold start conditions are the most critical one for cumulative emissions. Among the different possible technological solutions, this paper focuses on the evaluation of the potential of a burner system, which is activated before the engine start. The hypothetical burner exploits the lean combustion of an air-gasoline mixture to generate a high temperature gas stream which is directed to the catalyst section promoting a fast heating of the substrate.
Technical Paper

Polycyclic Aromatic Hydrocarbons Evolution and Interactions with Soot Particles During Fuel Surrogate Combustion: A Rate Rule-Based Kinetic Model

2021-09-05
2021-24-0086
Modeling combustion of transportation fuels remains a difficult task due to the extremely large number of species constituting commercial gasoline and diesel. However, for this purpose, multi-component surrogate fuel models with a reduced number of key species and dedicated reaction subsets can be used to reproduce the physical and chemical traits of diesel and gasoline, also allowing to perform CFD calculations. Recently, a detailed surrogate fuel kinetic model, named C3 mechanism, was developed by merging high-fidelity sub-mechanisms from different research groups, i.e. C0-C4 chemistry (NUI Galway), linear C6-C7 and iso-octane chemistry (Lawrence Livermore National Laboratory), and monocyclic aromatic hydrocarbons (MAHs) and polycyclic aromatic hydrocarbons (PAHs) (ITV-RWTH Aachen and CRECK modelling Lab-Politecnico di Milano).
Technical Paper

Modular Transmission Family for Fuel Consumption Reduction Tailored for Indian Market Needs

2021-09-22
2021-26-0049
Global warming is the driver for introduction of CO2 and fuel consumption legislation worldwide. Indian truck manufacturers are facing the introduction of Indian fuel efficiency norms. In the European Union the CO2 emission monitoring phase of the most relevant truck classes was completed in June 2020 by usage of the Vehicle Energy Consumption Calculation TOol VECTO. Indian rule makers are currently considering an adaptation of VECTO for the usage in India, too. Indian truck market has always been very cost sensitive. Introduction of Bharat Stage VI Phase I has already led to a significant cost increase for emission compliance. Therefore, it will be of vital importance to keep the additional product costs for achievement of future fuel consumption legislation as low as possible as long as the real-world operation will not be promoted by the government.
Technical Paper

21SIAT-0638 - Fleet Analytics - A Data-Driven and Synergetic Fleet Validation Approach

2021-09-22
2021-26-0499
Current developments in automotive industry such as hybrid powertrains and the continuously increasing demands on emission control systems, are pushing complexity still further. Validation of such systems lead to a huge amount of test cases and hence extreme testing efforts on the road. At the same time the pressure to reduce costs and minimize development time is creating challenging boundaries on development teams. Therefore, it is of utmost importance to utilize testing and validation prototypes in the most efficient way. It is necessary to apply high levels of instrumentation and collect as much data as possible. And a streamlined data pipeline allows the fleet managers to get new insights from the raw data and control the validation vehicles as well as the development team in the most efficient way. In this paper we will demonstrate a data-driven approach for validation testing.
Technical Paper

The Prospect and Benefits of Using the Partial-Averaged Navier-Stokes Method for Engine Flows

2020-04-14
2020-01-1107
This paper presents calculations of engine flows by using the Partially-Averaged Navier Stokes (PANS) method (Girimaji [1]; [2]). The PANS is a scale-resolving turbulence computational approach designed to resolve large scale fluctuations and model the remainder with appropriate closures. Depending upon the prescribed cut-off length (filter width) the method adjusts seamlessly from the Reynolds-Averaged Navier-Stokes (RANS) to the Direct Numerical Solution (DNS) of the Navier-Stokes equations. The PANS method was successfully used for many applications but mainly on static geometries, e.g. Basara et al. [3]; [4]. This is due to the calculation of the cut-off control parameter which requires that the resolved kinetic energy is known and this is usually obtained by suitably averaging of the resolved field. Such averaging process is expensive and impractical for engines as it would require averaging per cycles.
Technical Paper

An Analytical Energy-budget Model for Diesel Droplet Impingement on an Inclined Solid Wall

2020-04-14
2020-01-1158
The study of spray-wall interaction is of great importance to understand the dynamics that occur during fuel impingement onto the chamber wall or piston surfaces in internal combustion engines. It is found that the maximum spreading length of an impinged droplet can provide a quantitative estimation of heat transfer and energy transformation for spray-wall interaction. Furthermore, it influences the air-fuel mixing and hydrocarbon and particle emissions at combusting conditions. In this paper, an analytical model of a single diesel droplet impinging on the wall with different inclined angles (α) is developed in terms of βm (dimensionless maximum spreading length, the ratio of maximum spreading length to initial droplet diameter) to understand the detailed impinging dynamic process.
Technical Paper

Numerical Investigation on GDI Spray under High Injection Pressure up to 100 MPa

2020-09-15
2020-01-2108
In recent years, the increase of gasoline fuel injection pressure is a way to improve thermal efficiency and lower engine-out emissions in GDI homogenous combustion concept. The challenge of controlling particulate formation as well in mass and number concentrations imposed by emissions regulations can be pursued improving the mixture preparation process and avoiding mixture inhomogeneity with ultra-high injection pressure values up to 100 MPa. The increase of the fuel injection pressure in GDI homogeneous systems meets the demand for increased injector static flow, while simultaneously improves the spray atomization and mixing characteristics with consequent better combustion performance. Few studies quantify the effects of high injection pressure on transient gasoline spray evolution. The aim of this work was to simulate with OpenFOAM the spray morphology of a commercial gasoline injected in a constant volume vessel by a prototypal GDI injector.
X