Refine Your Search

Topic

Author

Search Results

Journal Article

An Erosion Aggressiveness Index (EAI) Based on Pressure Load Estimation Due to Bubble Collapse in Cavitating Flows Within the RANS Solvers

2015-09-06
2015-24-2465
Despite numerous research efforts, there is no reliable and widely accepted tool for the prediction of erosion prone material surfaces due to collapse of cavitation bubbles. In the present paper an Erosion Aggressiveness Index (EAI) is proposed, based on the pressure loads which develop on the material surface and the material yield stress. EAI depends on parameters of the liquid quality and includes the fourth power of the maximum bubble radius and the bubble size number density distribution. Both the newly proposed EAI and the Cavitation Aggressiveness Index (CAI), which has been previously proposed by the authors based on the total derivative of pressure at locations of bubble collapse (DP/Dt>0, Dα/Dt<0), are computed for a cavitating flow orifice, for which experimental and numerical results on material erosion have been published. The predicted surface area prone to cavitation damage, as shown by the CAI and EAI indexes, is correlated with the experiments.
Technical Paper

Numerical Parametric Study of a Six-Stroke Gasoline Compression Ignition (GCI) Engine Combustion- Part II

2020-04-14
2020-01-0780
In order to extend the operability limit of the gasoline compression ignition (GCI) engine, as an avenue for low temperature combustion (LTC) regime, the effects of parametric variations of engine operating conditions on the performance of six-stroke GCI (6S-GCI) engine cycle are numerically investigated, using an in-house 3D CFD code coupled with high-fidelity physical sub-models along with the Chemkin library. The combustion and emissions were calculated using a skeletal chemical kinetics mechanism for a 14-component gasoline surrogate fuel. Authors’ previous study highlighted the effects of the variation of injection timing and split ratio on the overall performance of 6S-GCI engine and the unique mixing-controlled burning mode of the charge mixtures during the two additional strokes. As a continuing effort, the present study details the parametric studies of initial gas temperature, boost pressure, fuel injection pressure, compression ratio, and EGR ratio.
Technical Paper

Machinability of As-Compacted P/M Parts: Effect of Material Chemistry

1998-02-23
980635
Since the advent of P/M technology as a near net shape production process, millions of mechanical components of various shapes and sizes have been produced. Although P/M continues to be one of the fast growing shaping processes, it suffers from the inability to produce intricate geometry's such as internal tapers, threads or recesses perpendicular to pressing direction. In such cases application of machining as a secondary forming operation becomes the preferred alternative. However, machining of P/M parts due to their inherent porosity is known to decrease tool life and increase tool chatter and vibration. Consequently, several attempts have been made to improve the machinability of P/M materials by either addition of machinability enhancing elements such as sulfur, calcium, tellurium, selenium, etc., or by resin impregnation of P/M parts.
Technical Paper

Process Control Standards for Technology Development

1998-04-08
981502
Engineering new technology and products challenges managers to balance design innovation and program risk. To do this, managers need methods to judge future results to avoid program and product disasters. Besides the traditional prediction tools of schedule, simulations and “iron tests”, process control standards (with measurements) can also be applied to the development programs to mitigate risks. This paper briefly discusses the theory and case history behind some new process control methods and standards currently in place at Caterpillar's Electrical & Electronics department. Process standards reviewed in this paper include process mapping, ISO9001, process controls, and process improvement models (e.g. SEI's CMMs.)
Technical Paper

Preparation and Characterization of Nanophase Gold Catalysts for Emissions Control

2008-10-07
2008-01-2639
Various gold catalysts were prepared using commercial and in-house fabricated advanced catalyst supports that included mesoporous silica, mesoporous alumina, sol-gel alumina, and transition metal oxides. Gold nanoparticles were loaded on the supports by co-precipitation, deposition-precipitation, ion exchange and surface functionalization techniques. The average gold particle size was ∼20nm or less. The oxidation activity of the prepared catalysts was studied using carbon monoxide and light hydrocarbons (ethylene, propylene and propane) in presence of water and CO2 and the results are presented.
Technical Paper

Wood-to-Wheels: A Multidisciplinary Research Initiative in Sustainable Transportation Utilizing Fuels and Co-Products from Forest Resources

2008-10-20
2008-21-0026
Michigan Technological University has established a broad-based university-wide research initiative, termed Wood-to-Wheels (W2W), to develop and evaluate improved technologies for growing, harvesting, converting, and using woody biomass in renewable transportation fuel applications. The W2W program bridges the entire biomass development-production-consumption life cycle with research in areas including forest resources, bioprocessing, engine/vehicle systems, and sustainable decisions. The W2W chain establishes a closed cycle of carbon between the atmosphere, woody biomass, fuels, and vehicular systems that can reduce the accumulation of CO2 in the atmosphere. This paper will summarize the activities associated with the Wood-to-Wheels initiative and describe challenges and the potential benefits that are achievable.
Technical Paper

Induction Hardening Simulation of Steel and Cast Iron Components

2002-03-19
2002-01-1557
The induction hardening process involves a complex interaction of electromagnetic heating, rapid cooling, metallurgical phase transformations, and mechanical behavior. Many factors including induction coil design, power, frequency, scanning velocity, workpiece geometry, material chemistry, and quench severity determine a process outcome. This paper demonstrates an effective application of a numerical analysis tool for understanding of induction hardening. First, an overview of the Caterpillar induction simulation tool is briefly discussed. Then, several important features of the model development are examined. Finally, two examples illustrating the use of the computer simulation tool for solving induction-hardening problems related to cracking and distortion are presented. These examples demonstrate the tool's ability to simulate changes in process parameters and latitude of modeling steel or cast iron.
Technical Paper

Modeling of Human Response From Vehicle Performance Characteristics Using Artificial Neural Networks

2002-05-07
2002-01-1570
This study investigates a methodology in which the general public's subjective interpretation of vehicle handling and performance can be predicted. Several vehicle handling measurements were acquired, and associated metrics calculated, in a controlled setting. Human evaluators were then asked to drive and evaluate each vehicle in a winter driving school setting. Using the acquired data, multiple linear regression and artificial neural network (ANN) techniques were used to create and refine mathematical models of human subjective responses. It is shown that artificial neural networks, which have been trained with the sets of objective and subjective data, are both more accurate and more robust than multiple linear regression models created from the same data.
Technical Paper

Caterpillar’s Autonomous Journey - The Argument for Autonomy

2016-09-27
2016-01-8005
Today’s business climate and economy demand new, innovative strategies from the initial kickoff of research and development - to the mining of ore from the earth - to the final inspection of a finished product in a mid-western factory. From startup companies with two employees to the largest companies, the world faces new and challenging requirements every day. The demands from companies, customers, executives, and shareholders continue to drive for higher outputs with more efficient use of personnel and investments. Fortunately, the rate of technology continues to exponentially accelerate, which allows those at the cutting edge of technology to capitalize. Caterpillar has been a pioneer in advanced technology since its inception and has been developing the foundation for autonomy over the past four decades.
Technical Paper

Splashing Criterion and Topological Features of a Single Droplet Impinging on the Flat Plate

2018-04-03
2018-01-0289
This paper aims to provide the experimental and numerical investigation of a single fuel droplet impingement on the different wall conditions to understand the detailed impinging dynamic process. The experimental work was carried out at the room temperature and pressure except for the variation of the impinged wall temperature. A high-speed camera was employed to capture the silhouette of the droplet impinging on wall process against a collimated light. Water, diesel, n-dodecane, and n-heptane were considered as four different droplets and injected from a precision syringe pump with the volume flow rate of 0.2 mL/min at various impact Weber numbers. The impingement outcomes after droplet impacting on the wall include stick, spread, rebound and splash, which depend on the controlling parameters of Weber number, Reynolds number, liquid and surface properties, etc.
Technical Paper

Evaluation of Cylinder Pressure Transducer Performance Including the Influence of Mounting Location and Thermal Protection

2022-02-21
2022-01-5014
The piezoelectric cylinder pressure transducer is one of the most critical tools for internal combustion (IC) engine research and development. However, not all cylinder pressure transducers perform equally in every application, and the fidelity of transducers can vary across different models and manufacturers. Even slightly dissimilar models from the same manufacturer can have significantly different performance in areas such as sensitivity and resistance to intra-cycle thermal shock. These performance differences can lead to errors and inconsistencies in the calculation of combustion metrics like mean effective pressure (MEP), the polytropic compression and expansion exponents (PolyC and PolyE), and mass fraction burn (MFB) calculations. The variations can lead to suboptimal hardware and calibration choices during the engine development phase.
Technical Paper

Blend Ratio Optimization of Fuels Containing Gasoline Blendstock, Ethanol, and Higher Alcohols (C3-C6): Part I - Methodology and Scenario Definition

2013-04-08
2013-01-1144
The U.S. Renewable Fuel Standard (RFS2) requires an increase in the use of advanced biofuels up to 36 billion gallons by 2022. Longer chain alcohols, in addition to cellulosic ethanol and synthetic biofuels, could be used to meet this demand while adhering to the RFS2 corn-based ethanol limitation. Higher carbon number alcohols can be utilized to improve the energy content, knock resistance, and/or petroleum displacement of gasoline-alcohol blends compared to traditional ethanol blends such as E10 while maintaining desired and regulated fuel properties. Part I of this paper focuses on the development of scenarios by which to compare higher alcohol fuel blends to traditional ethanol blends. It also details the implementation of fuel property prediction methods adapted from literature. Possible combinations of eight alcohols mixed with a gasoline blendstock were calculated and the properties of the theoretical fuel blends were predicted.
Technical Paper

A New Multi-point Active Drawbead Forming Die: Model Development for Process Optimization

1998-02-01
980076
A new press/die system for restraining force control has been developed in order to facilitate an increased level of process control in sheet metal forming. The press features a built-in system for controlling drawbead penetration in real time. The die has local force transducers built into the draw radius of the lower tooling. These sensors are designed to give process information useful for the drawbead control. This paper focuses on developing models of the drawbead actuators and the die shoulder sensors. The actuator model is useful for developing optimal control methods. The sensor characterization is necessary in order to develop a relationship between the raw sensor outputs and a definitive process characteristic such as drawbead restraining force (DBRF). Closed loop control of local specific punch force is demonstrated using the die shoulder sensor and a PID controller developed off-line with the actuator model.
Technical Paper

Drawbeads in Sheet Metal Stamping - A Review

1997-02-24
970986
The paper reviews the role of drawbeads in sheet metal stamping. The design of drawbeads is discussed in depth, with treatment of different bead cross sections, bead end shapes, and bead materials. International standards and practices are included. This is followed by the historical development of the modeling of the drawbead restraining force, starting with basic equilibrium approaches, and leading to the use of the finite element method which permits the study of drawbead effects on sheet metal flow in three dimensions. Finally, the potential of active drawbeads is described based upon ongoing research which is directed toward closed-loop computer control of the stamping process through adjustment of the drawbead penetration.
Technical Paper

Prediction and Measurement of Microstructure and Residual Stresses due to Electron Beam Welding Process

1999-04-14
1999-01-1872
Electron beam (EB) welding process is characterized by an extremely high power density that is capable of producing weld seams which are considerably deeper than width. Unlike other welding process, heat of EB welding is provided by the kinetic energy of electrons. This paper presents a computational model for the numerical prediction of microstructure and residual stress resulting from EB welding process. Energy input is modeled as a step function within the fusion zone. The predicted values from finite element simulation of the EB welding process agree well with the experimentally measured values. The present model is used to study an axial weld failure problem.
Technical Paper

Initiating a Values Based Culture at Track-Type Tractors Division of Caterpillar Inc.

1999-03-01
1999-01-0250
During the early 1990s, the Track-Type Tractors Division (TTTD) of Caterpillar Inc. experienced several challenges. The Division faced increasing global competition in the midst of an economic recession. Although intense plant modernization and reorganization occurred in the five previous years, the business unit was not profitable. In 1993, Track-Type Tractors Division instituted its solution -- a change in its culture. Previously, the culture hindered the division’s ability to move forward. This was revealed in a 1992 review detailing the major obstacles inhibiting management from achieving divisional goals. The division leaders recognized that a change in business philosophy, as opposed to further plant modernization, was required to achieve production goals and stay globally competitive.
Technical Paper

Reduction of the Environmental Impact of Essential Manufacturing Processes

1999-03-01
1999-01-0355
The drive of Design for the Environment is to reduce the environmental impact of both design and manufacturing processes. The most frequent method recommended is to substitute better materials and processes. However, there are processes that will continue to have undesirable environmental impacts due to the lack of knowledge of better methods. These processes are critical to manufacturing of products and can not be eliminated. All possible substitutions appear to have worse impacts. This paper explores modeling these processes and imposing a control method which permits an improvement of the environmental impact.
Technical Paper

Pressure-Swirl Atomization in the Near Field

1999-03-01
1999-01-0496
To model sprays from pressure-swirl atomizers, the connection between the injector and the downstream spray must be considered. A new model for pressure-swirl atomizers is presented which assumes little knowledge of the internal details of the injector, but instead uses available observations of external spray characteristics. First, a correlation for the exit velocity at the injector exit is used to define the liquid film thickness. Next, the film must be modeled as it becomes a thin, liquid sheet and breaks up, forming ligaments and droplets. A linearized instability analysis of the breakup of a viscous, liquid sheet is used as part of the spray boundary condition. The spray angle is estimated from spray photographs and patternator data. A mass averaged spray angle is calculated from the patternator data and used in some of the calculations.
Technical Paper

FD&E Total Life T-Sample Residual Stress Analytical Predictions and Measured Results

2019-04-02
2019-01-0528
The Society of Automotive Engineers Fatigue Design & Evaluation Committee [SAE FD&E] is actively working on a total life project for weldments, in which the welding residual stress is a key contributor to an accurate assessment of fatigue life. Physics-based welding process simulation and various types of residual stress measurements were pursued to provide a representation of the residual stress field at the failure location in the fatigue samples. A well-controlled and documented robotic welding process was used for all sample fabrications to provide accurate inputs for the welding simulations. One destructive (contour method) residual stress measurement and several non-destructive residual stress measurements-surface X-ray diffraction (XRD), energy dispersive X-ray diffraction (EDXRD), and neutron diffraction (ND)-were performed on the same or similarly welded samples.
Technical Paper

Computationally Efficient Reduced-Order Powertrain Model of a Multi-Mode Plug-In Hybrid Electric Vehicle for Connected and Automated Vehicles

2019-04-02
2019-01-1210
This paper presents the development of a reduced-order powertrain model for energy and SOC estimation of a multi-mode plug-in hybrid electric vehicle using only vehicle speed profile and route elevation as inputs. Such a model is intended to overcome the computational inefficiencies of higher fidelity powertrain and vehicle models in short and long horizon energy optimization efforts such as Coordinated Adaptive Cruise Control (CACC), Eco Approach and Departure (EcoAND), Eco Routing, and PHEV mode blending. The reduced-order powertrain model enables Connected and Automated Vehicles (CAVs) to utilize the onboard sensor and connected data to quickly react and plan their maneuvers to highly dynamic road conditions with minimal computational resources.
X