Refine Your Search

Topic

Author

Search Results

Technical Paper

Optimization of Diesel Engine and After-treatment Systems for a Series Hybrid Forklift Application

2020-04-14
2020-01-0658
This paper investigates an optimal design of a diesel engine and after-treatment systems for a series hybrid electric forklift application. A holistic modeling approach is developed in GT-Suite® to establish a model-based hardware definition for a diesel engine and an after-treatment system to accurately predict engine performance and emissions. The used engine model is validated with the experimental data. The engine design parameters including compression ratio, boost level, air-fuel ratio (AFR), injection timing, and injection pressure are optimized at a single operating point for the series hybrid electric vehicle, together with the performance of the after-treatment components. The engine and after-treatment models are then coupled with a series hybrid electric powertrain to evaluate the performance of the forklift in the standard VDI 2198 drive cycle.
Technical Paper

Alleviating the Magnetic Effects on Magnetometers Using Vehicle Kinematics for Yaw Estimation for Autonomous Ground Vehicles

2020-04-14
2020-01-1025
Autonomous vehicle operation is dependent upon accurate position estimation and thus a major concern of implementing the autonomous navigation is obtaining robust and accurate data from sensors. This is especially true, in case of Inertial Measurement Unit (IMU) sensor data. The IMU consists of a 3-axis gyro, 3-axis accelerometer, and 3-axis magnetometer. The IMU provides vehicle orientation in 3D space in terms of yaw, roll and pitch. Out of which, yaw is a major parameter to control the ground vehicle’s lateral position during navigation. The accelerometer is responsible for attitude (roll-pitch) estimates and magnetometer is responsible for yaw estimates. However, the magnetometer is prone to environmental magnetic disturbances which induce errors in the measurement.
Journal Article

Model-Based Estimation and Control System Development in a Urea-SCR Aftertreatment System

2008-04-14
2008-01-1324
In this paper, a model-based linear estimator and a non-linear control law for an Fe-zeolite urea-selective catalytic reduction (SCR) catalyst for heavy duty diesel engine applications is presented. The novel aspect of this work is that the relevant species, NO, NO2 and NH3 are estimated and controlled independently. The ability to target NH3 slip is important not only to minimize urea consumption, but also to reduce this unregulated emission. Being able to discriminate between NO and NO2 is important for two reasons. First, recent Fe-zeolite catalyst studies suggest that NOx reduction is highly favored by the NO 2 based reactions. Second, NO2 is more toxic than NO to both the environment and human health. The estimator and control law are based on a 4-state model of the urea-SCR plant. A linearized version of the model is used for state estimation while the full nonlinear model is used for control design.
Journal Article

The Model Integration and Hardware-in-the-Loop (HiL) Simulation Design for the Analysis of a Power-Split Hybrid Electric Vehicle with Electrochemical Battery Model

2017-03-28
2017-01-0001
This paper studies the hardware-in-the-loop (HiL) design of a power-split hybrid electric vehicle (HEV) for the research of HEV lithiumion battery aging. In this paper, an electrochemical model of a lithium-ion battery pack with the characteristics of battery aging is built and integrated into the vehicle model of Autonomie® software from Argonne National Laboratory. The vehicle model, together with the electrochemical battery model, is designed to run in a dSPACE real-time simulator while the powertrain power distribution is managed by a dSPACE MicroAutoBoxII hardware controller. The control interface is designed using dSPACE ControlDesk to monitor the real-time simulation results. The HiL simulation results with the performance of vehicle dynamics and the thermal aging of the battery are presented and analyzed.
Technical Paper

A Connected Controls and Optimization System for Vehicle Dynamics and Powertrain Operation on a Light-Duty Plug-In Multi-Mode Hybrid Electric Vehicle

2020-04-14
2020-01-0591
This paper presents an overview of the connected controls and optimization system for vehicle dynamics and powertrain operation on a light-duty plug-in multi-mode hybrid electric vehicle developed as part of the DOE ARPA-E NEXTCAR program by Michigan Technological University in partnership with General Motors Co. The objective is to enable a 20% reduction in overall energy consumption and a 6% increase in electric vehicle range of a plug-in hybrid electric vehicle through the utilization of connected and automated vehicle technologies. Technologies developed to achieve this goal were developed in two categories, the vehicle control level and the powertrain control level. Tools at the vehicle control level include Eco Routing, Speed Harmonization, Eco Approach and Departure and in-situ vehicle parameter characterization.
Technical Paper

Characterizing the Effect of Automotive Torque Converter Design Parameters on the Onset of Cavitation at Stall

2007-05-15
2007-01-2231
This paper details a study of the effects of multiple torque converter design and operating point parameters on the resistance of the converter to cavitation during vehicle launch. The onset of cavitation is determined by an identifiable change in the noise radiating from the converter during operation, when the collapse of cavitation bubbles becomes detectable by nearfield acoustical measurement instrumentation. An automated torque converter dynamometer test cell was developed to perform these studies, and special converter test fixturing is utilized to isolate the test unit from outside disturbances. A standard speed sweep test schedule is utilized, and an analytical technique for identifying the onset of cavitation from acoustical measurement is derived. Effects of torque converter diameter, torus dimensions, and pump and stator blade designs are determined.
Technical Paper

The Calculation of Mass Fraction Burn of Ethanol-Gasoline Blended Fuels Using Single and Two-Zone Models

2008-04-14
2008-01-0320
One-dimensional single-zone and two-zone analyses have been exercised to calculate the mass fraction burned in an engine operating on ethanol/gasoline-blended fuels using the cylinder pressure and volume data. The analyses include heat transfer and crevice volume effects on the calculated mass fraction burned. A comparison between the two methods is performed starting from the derivation of conservation of energy and the method to solve the mass fraction burned rates through the results including detailed explanation of the observed differences and trends. The apparent heat release method is used as a point of reference in the comparison process. Both models are solved using the LU matrix factorization and first-order Euler integration.
Technical Paper

Adequacy of Reduced Order Models for Model-Based Control in a Urea-SCR Aftertreatment System

2008-04-14
2008-01-0617
Model-based control strategies are important for meeting the dual objective of maximizing NOx reduction and minimizing NH3 slip in urea-SCR catalysts. To be implementable on the vehicle, the models should capture the essential behavior of the system, while not being computationally intensive. This paper discusses the adequacy of two different reduced order SCR catalyst models and compares their performance with a higher order model. The higher order model assumes that the catalyst has both diffusion and reaction kinetics, whereas the reduced order models contain only reaction kinetics. After describing each model, its parameter identification and model validation based on experiments on a Navistar I6 7.6L engine are presented. The adequacy of reduced order models is demonstrated by comparing the NO, NO2 and NH3 concentrations predicted by the models to their concentrations from the test data.
Technical Paper

Calibrating and Protecting Microphones to Allow Acoustic Measurements in Hazardous Environments

2009-05-19
2009-01-2163
Performing acoustic measurements on or near engines, transmissions, as well as in other circumstances where the environment is hazardous and harsh for microphones requires special precautions. Fluids inevitably leak, and the possibility of transducer damage can be very high without proper protection. Properly protecting microphones during testing allows for consistent data quality in these hazardous and difficult environments. While this paper will present the use of a 5 mil Nitrile cover which protects against many fluids within the scope of automotive testing, including water, hydrocarbons, and alcohols, as well as having good heat resistance and high strength, the concepts developed are applicable to other types of microphone protective mechanisms. Acoustic sensitivity was measured and used to calculate the change of the microphone's response after the treatment is applied, as well as after being exposed to various contaminants.
Technical Paper

Modeling, Design and Validation of an Exhaust Muffler for a Commercial Telehandler

2009-05-19
2009-01-2047
This paper describes the design, development and validation of a muffler for reducing exhaust noise from a commercial tele-handler. It also describes the procedure for modeling and optimizing the exhaust muffler along with experimental measurement for correlating the sound transmission loss (STL). The design and tuning of the tele-handler muffler was based on several factors including overall performance, cost, weight, available space, and ease of manufacturing. The analysis for predicting the STL was conducted using the commercial software LMS Virtual Lab (LMS-VL), while the experimental validation was carried out in the laboratory using the two load setup. First, in order to gain confidence in the applicability of LMS-VL, the STL of some simple expansion mufflers with and without extended inlet/outlet and perforations was considered. The STL of these mufflers were predicted using the traditional plane wave transfer matrix approach.
Technical Paper

Adaptation of Four-Stroke Motorcycle Engine to Continuously Variable Transmission for Snowmobile Application

2003-09-15
2003-32-0083
The successful implementation of a clean, quiet, high-performance four-stroke motorcycle engine into an existing snowmobile chassis has been achieved. The snowmobile is easy to start, easy to drive, and environmentally friendly. The following paper describes the conversion process in detail with actual dynamometer and field test data. The vehicle meets the proposed 2010 EPA snowmobile emissions regulations and is quieter than a stock snowmobile. The snowmobile not only addresses environmental concerns, it is economical as well, with an approximate cost of $5874.
Technical Paper

Snow surface model for tire performance simulation

2000-06-12
2000-05-0252
New tire model is under development in European Commission research project called VERT (Vehicle Road Tire Interaction, BRPR-CT97-0461). The objective of the project is to create a physical model for tire/surface contact simulation. One of the subtasks has been to develop a method for snow surface characterization. The aim is simulate winter tire on snow surface with FEM software. This kind of simulation has been earlier done with snow model parameters from laboratory experiments. A snow shear box device has been developed in Helsinki University of Technology to measure mechanical properties of snow in field conditions. Both shear and compression properties can be measured with the device. With the device, a large number of snow measurements have been done at the same time with VERT winter tire testing in Nokian Tyres'' test track in Ivalo Finland. Measurement data have been postprocessed afterwards and parameters for material models have been evaluated.
Technical Paper

The Effects of Different Input Excitation on the Dynamic Characterization of an Automotive Shock Absorber

2001-04-30
2001-01-1442
This paper deals with the dynamic characterization of an automotive shock absorber, a continuation of an earlier work [1]. The objective of this on-going research is to develop a testing and analysis methodology for obtaining dynamic properties of automotive shock absorbers for use in CAE-NVH low-to-mid frequency chassis models. First, the effects of temperature and nominal length on the stiffness and damping of the shock absorber are studied and their importance in the development of a standard test method discussed. The effects of different types of input excitation on the dynamic properties of the shock absorber are then examined. Stepped sine sweep excitation is currently used in industry to obtain shock absorber parameters along with their frequency and amplitude dependence. Sine-on-sine testing, which involves excitation using two different sine waves has been done in this study to understand the effects of the presence of multiple sine waves on the estimated dynamic properties.
Technical Paper

Integration of OpenADR with Node-RED for Demand Response Load Control Using Internet of Things Approach

2017-03-28
2017-01-1702
The increased market share of electric vehicles and renewable energy resources have raised concerns about their impact on the current electrical distribution grid. To achieve sustainable and stable power distribution, a lot of effort has been made to implement smart grids. This paper addresses Demand Response (DR) load control in a smart grid using Internet of Things (IoT) technology. A smart grid is a networked electrical grid which includes a variety of components and sub-systems, including renewable energy resources, controllable loads, smart meters, and automation devices. An IoT approach is a good fit for the control and energy management of smart grids. Although there are various commercial systems available for smart grid control, the systems based on open sources are limited. In this study, we adopt an open source development platform named Node-RED to integrate DR capabilities in a smart grid for DR load control. The DR system employs the OpenADR standard.
Technical Paper

Torsional Vibration Analysis of Six Speed MT Transmission and Driveline from Road to Lab

2017-06-05
2017-01-1845
When a manual transmission (MT) powertrain is subjected to high speeds and high torques, the vehicle driveshaft, and other components experience an increase in stored potential energy. When the engine and driveshaft are decoupled during an up or down shift, the potential energy is released causing clunk during the shift event. The customer desires a smooth shift thus reduction of clunk will improve experience and satisfaction. In this study, a six-speed MT, rear-wheel-drive (RWD) passenger vehicle was used to experimentally capture acoustic and vibration data during the clunk event. To replicate the in-situ results, additional data was collected and analyzed for powertrain component roll and pitch. A lumped parameter model of key powertrain components was created to replicate the clunk event and correlate with test data. The lumped parameter model was used to modify clutch tip-out parameters, which resulted in reduced prop shaft oscillations.
Technical Paper

Novel Approach to Integration of Turbocompounding, Electrification and Supercharging Through Use of Planetary Gear System

2018-04-03
2018-01-0887
Technologies that provide potential for significant improvements in engine efficiency include, engine downsizing/downspeeding (enabled by advanced boosting systems such as an electrically driven compressor), waste heat recovery through turbocompounding or organic Rankine cycle and 48 V mild hybridization. FEV’s Integrated Turbocompounding/Waste Heat Recovery (WHR), Electrification and Supercharging (FEV-ITES) is a novel approach for integration of these technologies in a single unit. This approach provides a reduced cost, reduced space claim and an increase in engine efficiency, when compared to the independent integration of each of these technologies. This approach is enabled through the application of a planetary gear system. Specifically, a secondary compressor is connected to the ring gear, a turbocompounding turbine or organic Rankine cycle (ORC) expander is connected to the sun gear, and an electric motor/generator is connected to the carrier gear.
Technical Paper

Torque Weighting Vibration Dose Value to Aid Powertrain Calibration Process for Transient Torque Maneuvers

2021-08-31
2021-01-1034
This paper investigates the application of torque weighting to vibration dose value. This is done as a means to enhance correlation of perceived drive comfort directly to driver pedal commands while rejecting uncorrelated inputs. Current industry standards for vehicle comfort are formulated and described by ISO2631, which is a culmination of research with single or multi-axis vibration of narrow or broadband excitation. The standard is capable of estimating passenger comfort to vibrations, however, it only accounts for reaction vibrations to controlled inputs and not perceived vibration request vs. response vibration. Metrics that account for torque inputs and the vibration response create actionable estimates of dosage due to driver torque requests without uncorrelated inputs. This reduces the need for additional accelerometers and special compensating algorithms when road or track testing. The use case for the proposed modified metric is during the powertrain calibration process.
Technical Paper

Cavitation Detection in Automotive Torque Converters Using Nearfield Acoustical Measurements

2005-05-16
2005-01-2516
As automotive torque converters decrease in both diameter and axial length, the effects of cavitation in the torque converter becomes increasingly important on noise, efficiency, and performance goals. Cavitation is the formation and collapse of vapor bubbles in a working fluid when local static pressure falls below the vapor pressure of the working fluid. A technique to detect cavitation in automotive torque converters using nearfield acoustical measurements is presented. The technique concentrates on high frequency noise that is associated with the collapse of vapor bubbles. The nearfield acoustical technique is compared to two other techniques using static pressure measurements inside the torque converter; one on the torque converter stator blades and the other on the torque converter pump blades. A microwave telemetry transmitter was used to obtain data from inside the torque converter in both previous investigations.
Technical Paper

Cavitation Prediction in Automotive Torque Converters

2005-05-16
2005-01-2557
As automotive torque converters decrease in both diameter and axial length, the effects of cavitation in the torque converter becomes increasingly important on noise, efficiency, and performance goals. Therefore, a cavitation prediction technique is developed in this investigation. In a previous investigation it was shown that cavitation is effected by inlet temperature, charge pressure, and K-factor. The prediction technique is devolved to encompass these variables. A dimensional analysis using the power product method is performed with all relevant variables. The nearfield acoustical cavitation detection technique, discussed in the previous investigation, is used to obtain experimental results from a torque converter test lab. The test matrix for the experimental results was constructed to include effects from inlet temperature, charge pressure, and K-factor. The data obtained experimentally is used to curve fit the results found through the power product method.
Technical Paper

Development of the MTU Automatic Shifting Manual Six Speed Transmission

2006-04-03
2006-01-0747
The purpose of this report is to describe the process for the development of the automatically shifting manual transmission control system hardware and software to be used in the MTU Challenge X Equinox, a through-the-road parallel hybrid electric vehicle. The automatically shifting manual transmission was chosen for development, as it combines the ease of use of an automatic transmission with the fuel efficiency of a manual, while eliminating the parasitic losses in the torque converter and the transmission hydraulic pump. This report illustrates the process used to develop the software-in-the loop modeling that was developed for the initial proof of concept. In addition, it describes the development of the control strategy and hardware build for the prototype transmission. To begin the design process research was preformed on existing automatically shifting manuals and manual transmissions in general. From there vehicle subsystems were assembled using Simulink block diagrams.
X