Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

A Model for the Unsteady Motion of Pollutant Particles in the Exhaust System of an I.C. Engine

2003-03-03
2003-01-0721
The measurement of the various pollutant species (HC, CO, NO, etc.) has become one of the main issues in internal combustion engine research. This interest concerns not only their quantitative measurement but also the study of the mechanism of their formation. In fact, pollutant species concentration can be used as an indicator for the combustion characteristics. For instance, it enables the determination of a lean or a rich combustion, the percentage of EGR, etc. The purpose of this research is to investigate the behavior of pollutant gas particles in the first part of an engine exhaust system through a detailed study of the unsteady flow in the exhaust pipe. The results are intended to designate the appropriate sensor positions which ensure accurate measurement results. This investigation wants to track an inert component in the exhaust system, namely the NO gas.
Technical Paper

Exhaust-Gas Dynamics Model for Identification Purposes

2003-03-03
2003-01-0368
The burned gas remaining in the cylinder after the exhaust stroke of an SI engine, i.e. the residual gas fraction, has a significant influence on both the torque production and the composition of the exhaust gas. This work investigates the behavior of the residual gas fraction over the entire operating range of the engine. A combined discrete-continuous linear model is identified, which describes the dynamic effects of the gas composition from when the gases enter the cylinder up to the measurement with a specific sensor. In this investigation, that sensor is a fast NO measurement device. The system is modelled by three elements in series: the in-cylinder mixing, the transport delay, and the exhaust mixing. The resulting model contains three elements in series connection: the in cylinder mixing, the transport delay, and the exhaust gas mixing. The model is able to calculate the fuel mass entering the cylinder during a fuel injection transient.
Technical Paper

Differences in Pre- and Post-Converter Lambda Sensor Characteristics

1996-02-01
960335
The two characteristics of wide-range air/fuel ratio sensors when located in front of and behind a three-way catalytic converter are investigated. Input as well as output gas concentration measurements and sensor readouts are presented. Behind a new converter almost no oxygen can be measured for rich air/fuel ratios. The wide-range sensor's signal is sensitive to changes in the gas composition when keeping the air/fuel ratio constant at a rich value. Since the gas compositions up- and down-stream of the converter differ, the sensor signals are not identical for the same rich air/fuel ratio before and after the converter. The various diffusion coefficients of the exhaust gas species flowing through the porous coating of the sensor combinded with the different up- and downstream gas compositions are responsible for the different sensor characteristics.
Technical Paper

Model Identification for the A/F Path of an SI Engine

1997-02-24
970612
Modern model-based control schemes and their application on different engines need mathematical models for the various dynamic subsystems of interest. Here, the fuel path of an SI engine is investigated. When the engine speed and the throttle angle are kept constant, the fuel path is excited only by the fuel injected. Taking the NO concentration of the exhaust gas as a measure for the air/fuel ratio, models are derived for the wall-wetting dynamics, the gas mixture, as well as for the air/fuel ratio sensor. When only the spark advance is excited, the gas flow dynamics can be studied. A very fast NO measurement device is used as reference. Its time constant is below the segment time of one single cylinder (180° crank angle for a 4-cylinder engine), therefore its dynamics are much faster than the time constants of the systems investigated. A model structure considering the muliplexing effects of the discrete operation of an engine is given for the fuel path of a BMW 1.8 liter engine.
X