Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Laboratory Study of Soot, Propylene, and Diesel Fuel Impact on Zeolite-Based SCR Filter Catalysts

2009-04-20
2009-01-0903
Selective Catalytic Reduction (SCR) catalysts have been designed to reduce NOx with the assistance of an ammonia-based reductant. Diesel Particulate Filters (DPF) have been designed to trap and eventually oxidize particulate matter (PM). Combining the SCR function within the wall of a high porosity particulate filter substrate has the potential to reduce the overall complexity of the aftertreatment system while maintaining the required NOx and PM performance. The concept, termed Selective Catalytic Reduction Filter (SCRF) was studied using a synthetic gas bench to determine the NOx conversion robustness from soot, coke, and hydrocarbon deposition. Soot deposition, coke derived from propylene exposure, and coke derived from diesel fuel exposure negatively affected the NOx conversion. The type of soot and/or coke responsible for the inhibited NOx conversion did not contribute to the SCRF backpressure.
Journal Article

Modeling of Thermophoretic Soot Deposition and Hydrocarbon Condensation in EGR Coolers

2009-06-15
2009-01-1939
EGR coolers are effective to reduce NOx emissions from diesel engines due to lower intake charge temperature. EGR cooler fouling reduces heat transfer capacity of the cooler significantly and increases pressure drop across the cooler. Engine coolant provided at 40–90 C is used to cool EGR coolers. The presence of a cold surface in the cooler causes particulate soot deposition and hydrocarbon condensation. The experimental data also indicates that the fouling is mainly caused by soot and hydrocarbons. In this study, a 1-D model is extended to simulate particulate soot and hydrocarbon deposition on a concentric tube EGR cooler with a constant wall temperature. The soot deposition caused by thermophoresis phenomena is taken into account the model. Condensation of a wide range of hydrocarbon molecules are also modeled but the results show condensation of only heavy molecules at coolant temperature.
Journal Article

Measurement of Diesel Spray Formation and Combustion upon Different Nozzle Geometry using Hybrid Imaging Technique

2014-04-01
2014-01-1410
High pressure diesel sprays were visualized under vaporizing and combusting conditions in a constant-volume combustion vessel. Near-simultaneous visualization of vapor and liquid phase fuel distribution were acquired using a hybrid shadowgraph/Mie-scattering imaging setup. This imaging technique used two pulsed LED's operating in an alternative manner to provide proper light sources for both shadowgraph and Mie scattering. In addition, combustion cases under the same ambient conditions were visualized through high-speed combustion luminosity measurement. Two single-hole diesel injectors with same nozzle diameters (100μm) but different k-factors (k0 and k1.5) were tested in this study. Detailed analysis based on spray penetration rate curves, rate of injection measurements, combustion indicators and 1D model comparison have been performed.
Journal Article

The Effects of Temperature, Shear Stress, and Deposit Thickness on EGR Cooler Fouling Removal Mechanism - Part 2

2016-04-05
2016-01-0186
Exhaust gas recirculation (EGR) coolers are used on diesel engines to reduce peak in-cylinder flame temperatures, leading to less NOx formation during the combustion process. There is an ongoing concern with soot and hydrocarbon fouling inside the cold surface of the cooler. The fouling layer reduces the heat transfer efficiency and causes pressure drop to increase across the cooler. A number of experimental studies have demonstrated that the fouling layer tends to asymptotically approach a critical height, after which the layer growth ceases. One potential explanation for this behavior is the removal mechanism derived by the shear force applied on the soot and hydrocarbon deposit surface. As the deposit layer thickens, shear force applied on the fouling surface increases due to the flow velocity growth. When a critical shear force is applied, deposit particles start to get removed.
Journal Article

Effect of Thermal Exposure Time on the Relaxation of Residual Stress in High Pressure Die Cast AM60

2016-04-05
2016-01-0423
Magnesium alloys are becoming more commonly used for large castings with sections of varying thicknesses. During subsequent processing at elevated temperatures, residual stresses may relax and become a potential mechanism for part distortion. This study was conducted to quantify the effects of thermal exposure on residual stresses and relaxation in a high pressure die cast magnesium (AM60) alloy. The goal was to characterize relaxation of residual stresses at temperatures that are commonly experienced by body components during a typical paint bake cycle. A residual stress test sample design and quench technique developed for relaxation were used and a relaxation study was conducted at two exposure temperatures (140°C and 200°C) over a range of exposure times (0.25 to 24 hours). The results indicate that a significant amount of residual stress relaxation occurred very rapidly during exposure at both exposure temperatures.
Journal Article

Experimental and Numerical Study of Flame Kernel Formation Processes of Propane-Air Mixture in a Pressurized Combustion Vessel

2016-04-05
2016-01-0696
Fuel lean combustion and exhaust gas dilution are known to increase the thermal efficiency and reduce NOx emissions. In this study, experiments are performed to understand the effect of equivalence ratio on flame kernel formation and flame propagation around the spark plug for different low turbulent velocities. A series of experiments are carried out for propane-air mixtures to simulate engine-like conditions. For these experiments, equivalence ratios of 0.7 and 0.9 are tested with 20 percent mass-based exhaust gas recirculation (EGR). Turbulence is generated by a shrouded fan design in the vicinity of J-spark plug. A closed loop feedback control system is used for the fan to generate a consistent flow field. The flow profile is characterized by using Particle Image Velocimetry (PIV) technique. High-speed Schlieren visualization is used for the spark formation and flame propagation.
Journal Article

Lubricant-Derived Ash Impact on Gasoline Particulate Filter Performance

2016-04-05
2016-01-0942
The increasing use of gasoline direct injection (GDI) engines coupled with the implementation of new particulate matter (PM) and particle number (PN) emissions regulations requires new emissions control strategies. Gasoline particulate filters (GPFs) present one approach to reduce particle emissions. Although primarily composed of combustible material which may be removed through oxidation, particle also contains incombustible components or ash. Over the service life of the filter the accumulation of ash causes an increase in exhaust backpressure, and limits the useful life of the GPF. This study utilized an accelerated aging system to generate elevated ash levels by injecting lubricant oil with the gasoline fuel into a burner system. GPFs were aged to a series of levels representing filter life up to 150,000 miles (240,000 km). The impact of ash on the filter pressure drop and on its sensitivity to soot accumulation was investigated at specific ash levels.
Journal Article

Rapidly Pulsed Reductants in Diesel NOx Reduction by Lean NOx Traps: Effects of Mixing Uniformity and Reductant Type

2016-04-05
2016-01-0956
Lean NOx Traps (LNTs) are one type of lean NOx reduction technology typically used in smaller diesel passenger cars where urea-based Selective Catalytic Reduction (SCR) systems may be difficult to package . However, the performance of lean NOx traps (LNT) at temperatures above 400 C needs to be improved. The use of Rapidly Pulsed Reductants (RPR) is a process in which hydrocarbons are injected in rapid pulses ahead of a LNT in order to expand its operating window to higher temperatures and space velocities. This approach has also been called Di-Air (diesel NOx aftertreatment by adsorbed intermediate reductants) by Toyota. There is a vast parameter space which could be explored to maximize RPR performance and reduce the fuel penalty associated with injecting hydrocarbons. In this study, the mixing uniformity of the injected pulses, the type of reductant, and the concentration of pulsed reductant in the main flow were investigated.
Journal Article

CFD Driven Parametric Design of Air-Air Jet Pump for Automotive Carbon Canister Purging

2017-03-28
2017-01-1316
A jet pump (also known as ejector) uses momentum of a high velocity jet (primary flow) as a driving mechanism. The jet is created by a nozzle that converts the pressure head of the primary flow to velocity head. The high velocity primary flow exiting the nozzle creates low pressure zone that entrains fluid from a secondary inlet and transfers the total flow to desired location. For a given pressure of primary inlet flow, it is desired to entrain maximum flow from secondary inlet. Jet pumps have been used in automobiles for a variety of applications such as: filling the Fuel Delivery Module (FDM) with liquid fuel from the fuel tank, transferring liquid fuel between two halves of the saddle type fuel tank and entraining fresh coolant in the cooling circuit. Recently, jet pumps have been introduced in evaporative emission control system for turbocharged engines to remove gaseous hydrocarbons stored in carbon canister and supply it to engine intake manifold (canister purging).
Technical Paper

Investigation of Diesel-CNG RCCI Combustion at Multiple Engine Operating Conditions

2020-04-14
2020-01-0801
Past experimental studies conducted by the current authors on a 13 liter 16.7:1 compression ratio heavy-duty diesel engine have shown that diesel-Compressed Natural Gas (CNG) Reactivity Controlled Compression Ignition (RCCI) combustion targeting low NOx emissions becomes progressively difficult to control as the engine load is increased. This is mainly due to difficulty in controlling reactivity levels at higher loads. For the current study, CFD investigations were conducted in CONVERGE using the SAGE combustion solver with the application of the Rahimi mechanism. Studies were conducted at a load of 5 bar BMEP to validate the simulation results against RCCI experimental data. In the low load study, it was found that the Rahimi mechanism was not able to predict the RCCI combustion behavior for diesel injection timings advanced beyond 30 degCA bTDC. This poor prediction was found at multiple engine speed and load points.
Journal Article

Enhanced Durability of a Cu/Zeolite Based SCR Catalyst

2008-04-14
2008-01-1025
Passenger and light duty diesel vehicles will require up to 90% NOx conversion over the Federal Test Procedure (FTP) to meet future Tier 2 Bin 5 standards. This accomplishment is especially challenging for low exhaust temperature applications that mostly operate in the 200 - 350°C temperature regime. Selective catalytic reduction (SCR) catalysts formulated with Cu/zeolites have shown the potential to deliver this level of performance fresh, but their performance can easily deteriorate over time as a result of high temperature thermal deactivation. These high temperature SCR deactivation modes are unavoidable due to the requirements necessary to actively regenerate diesel particulate filters and purge SCRs from sulfur and hydrocarbon contamination. Careful vehicle temperature control of these events is necessary to prevent unintentional thermal damage but not always possible. As a result, there is a need to develop thermally robust SCR catalysts.
Journal Article

Technical Advantages of Vanadium SCR Systems for Diesel NOx Control in Emerging Markets

2008-04-14
2008-01-1029
Selective catalytic reduction (SCR) is a promising technology for diesel aftertreatment to meet NOx emissions targets in several countries. In established markets such as the US and Europe, zeolite SCR systems are expected to be used due to their ability to survive the exhaust gas temperatures seen in an active diesel particulate filter regeneration. In emerging markets where the fuel sulfur level may be as high as 2000 parts per million, zeolite SCR catalysts may have durability issues. In these markets, low sulfur fuel is needed overall to meet emissions standards and to avoid high sulfate emissions, but the aftertreatment system must be durable to high sulfur levels because there is a risk of exposure to high sulfur fuel. Also, emissions standards may be met without a DPF in some applications, so that the exhaust system would not see temperatures of 600°C or higher.
Journal Article

Ionization Signal Response during Combustion Knock and Comparison to Cylinder Pressure for SI Engines

2008-04-14
2008-01-0981
In-cylinder ion sensing is a subject of interest due to its application in spark-ignited (SI) engines for feedback control and diagnostics including: combustion knock detection, rate and phasing of combustion, and mis-fire On Board Diagnostics (OBD). Further advancement and application is likely to continue as the result of the availability of ignition coils with integrated ion sensing circuitry making ion sensing more versatile and cost effective. In SI engines, combustion knock is controlled through closed loop feedback from sensor metrics to maintain knock near the borderline, below engine damage and NVH thresholds. Combustion knock is one of the critical applications for ion sensing in SI engines and improvement in knock detection offers the potential for increased thermal efficiency. This work analyzes and characterizes the ionization signal in reference to the cylinder pressure signal under knocking and non-knocking conditions.
Journal Article

Combined Fe-Cu SCR Systems with Optimized Ammonia to NOx Ratio for Diesel NOx Control

2008-04-14
2008-01-1185
Selective catalytic reduction (SCR) is a viable option for control of oxides of nitrogen (NOx) from diesel engines. Currently, copper zeolite (Cu-zeolite) SCR catalysts are favored for configurations where the exhaust gas temperature is below 450°C for the majority of operating conditions, while iron zeolite (Fe-zeolite) SCR catalysts are preferred where NOx conversion is needed at temperatures above 450°C. The selection of Cu-zeolite or Fe-zeolite SCR catalysts is based on the different performance characteristics of these two catalyst types. Cu-zeolite catalysts are generally known for having efficient NOx reduction at low temperatures with little or no NO2, and they tend to selectively oxidize ammonia (NH3) to N2 at temperatures above 400°C, leading to poor NOx conversion at elevated temperatures.
Journal Article

Selective Catalytic Reduction for Treating the NOx Emissions from Lean-Burn Gasoline Engines: Durability Assessment

2008-04-14
2008-01-0811
A laboratory study was performed to assess the potential of using selective catalytic reduction (SCR) with NH3 to treat the NOx emissions from lean-burn gasoline engines. A primary concern was the potential for hot rich exhaust conditions on the vehicle, as such conditions could degrade the zeolite-based SCR catalysts being developed for automotive applications. Samples of an iron/zeolite formulation were aged for 34 hours behind samples of a three-way catalyst (TWC) on a pulse-flame combustion reactor using different A/F ratio schedules that exposed the catalysts to either continuously lean operation, mostly stoichiometric operation, or mostly rich operation. For each A/F ratio schedule, separate SCR samples were aged with inlet temperatures of 750°C, 800°C, or 850°C. The aged SCR samples were evaluated for NOx conversion at 25K hr-1 during lean temperature ramps with 500 ppm NO and NH3.
Journal Article

Diesel EGR Cooler Fouling

2008-10-06
2008-01-2475
The buildup of deposits in EGR coolers causes significant degradation in heat transfer performance, often on the order of 20-30%. Deposits also increase pressure drop across coolers and thus may degrade engine efficiency under some operating conditions. It is unlikely that EGR cooler deposits can be prevented from forming when soot and HC are present. The presence of cooled surfaces will cause thermophoretic soot deposition and condensation of HC and acids. While this can be affected by engine calibration, it probably cannot be eliminated as long as cooled EGR is required for emission control. It is generally felt that “dry fluffy” soot is less likely to cause major fouling than “heavy wet” soot. An oxidation catalyst in the EGR line can remove HC and has been shown to reduce fouling in some applications. The combination of an oxidation catalyst and a wall-flow filter largely eliminates fouling. Various EGR cooler designs affect details of deposit formation.
Journal Article

The Effect of Hydrocarbons on the Selective Catalyzed Reduction of NOx over Low and High Temperature Catalyst Formulations

2008-04-14
2008-01-1030
Selective Catalytic Reduction of NOx is a promising technology to enable diesel engines to meet certification under Tier 2 Bin 5 emissions requirements. SCR catalysts for vehicle use are typically zeolitic materials known to store both hydrocarbons and ammonia. Ammonia storage on the zeolite has a beneficial effect on NOx conversion; hydrocarbons however, compete with ammonia for storage sites and may also block access to the interior of the zeolites where the bulk of the catalytic processes take place. This paper presents the results of laboratory studies utilizing surrogate hydrocarbon species to simulate engine-out exhaust over catalysts formulated to operate in both low (≈175-500°C) and high temperature (≈250-600°C) regimes. The effects of hydrocarbon exposure of these individual species on the SCR reaction are examined and observations are made as to necessary conditions for the recovery of SCR activity.
Journal Article

Pressure Based Sensing Approach for Front Impacts

2011-04-12
2011-01-1443
This study demonstrates the use of pressure sensing technology to predict the crash severity of frontal impacts. It presents an investigation of the pressure change in the front structural elements (bumper, crush cans, rails) during crash events. A series of subsystem tests were conducted in the laboratory that represent a typical frontal crash development series and provided empirical data to support the analysis of the concept. The pressure signal energy at different sensor mounting locations was studied and design concepts were developed for amplifying the pressure signal. In addition, a pressure signal processing methodology was developed that relies on the analysis of the air flow behavior by normalizing and integrating the pressure changes. The processed signal from the pressure sensor is combined with the restraint control module (RCM) signals to define the crash severity, discriminate between the frontal crash modes and deploy the required restraint devices.
Technical Paper

Three-Dimensional Simulations of Automotive Catalytic Converter Internal Flow

1991-02-01
910200
The three-dimensional non-reacting flow field inside a typical dual-monolith automotive catalytic converter was simulated using finite difference analysis. The monolithic brick resistance was formulated from the pressure gradient of fully developed laminar duct-flow and corrected for the entrance effect. This correlation was found to agree with experimental pressure drop data, and was introduced as an additional source term into the non-dimensional momentum governing equation within the brick. Flow distribution within the monolith was found to depend strongly on the diffuser performance, which is a complex function of flow Reynolds number, brick resistance, and inlet pipe length and bending angles. A distribution index was formulated to quantify the degree of non-uniformity at selected test cases covering ranges of flow conditions, brick types, and inlet conditions.
Journal Article

A Comparison of Combustion and Emissions of Diesel Fuels and Oxygenated Fuels in a Modern DI Diesel Engine

2012-09-10
2012-01-1695
Two oxygenated fuels were evaluated on a single-cylinder diesel engine and compared to three hydrocarbon diesel fuels. The oxygenated fuels included canola biodiesel (canola methyl esters, CME) and CME blended with dibutyl succinate (DBS), both of which are or have the potential to be bio-derived. DBS was added to improve the cold flow properties, but also reduced the cetane number and net heating value of the resulting blend. A 60-40 blend of the two (60% vol CME and 40% vol DBS) provided desirable cold flow benefits while staying above the U.S. minimum cetane number requirement. Contrary to prior vehicle test results and numerous literature reports, single-cylinder engine testing of both CME and the 60-40 blend showed no statistically discernable change in NOx emissions relative to diesel fuel, but only when constant intake oxygen was maintained.
X