Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Reduction of Steady-State CFD HVAC Simulations into a Fully Transient Lumped Parameter Network

2014-05-10
2014-01-9121
Since transient vehicle HVAC computational fluids (CFD) simulations take too long to solve in a production environment, the goal of this project is to automatically create a lumped-parameter flow network from a steady-state CFD that solves nearly instantaneously. The data mining algorithm k-means is implemented to automatically discover flow features and form the network (a reduced order model). The lumped-parameter network is implemented in the commercial thermal solver MuSES to then run as a fully transient simulation. Using this network a “localized heat transfer coefficient” is shown to be an improvement over existing techniques. Also, it was found that the use of the clustering created a new flow visualization technique. Finally, fixing clusters near equipment newly demonstrates a capability to track localized temperatures near specific objects (such as equipment in vehicles).
Journal Article

Multidisciplinary Optimization under Uncertainty Using Bayesian Network

2016-04-05
2016-01-0304
This paper proposes a novel probabilistic approach for multidisciplinary design optimization (MDO) under uncertainty, especially for systems with feedback coupled analyses with multiple coupling variables. The proposed approach consists of four components: multidisciplinary analysis, Bayesian network, copula-based sampling, and design optimization. The Bayesian network represents the joint distribution of multiple variables through marginal distributions and conditional probabilities, and updates the distributions based on new data. In this methodology, the Bayesian network is pursued in two directions: (1) probabilistic surrogate modeling to estimate the output uncertainty given values of the design variables, and (2) probabilistic multidisciplinary analysis (MDA) to infer the distributions of the coupling and output variables that satisfy interdisciplinary compatibility conditions.
Journal Article

Calibration and Demonstration of Vehicle Powertrain Thermal Management Using Model Predictive Control

2017-03-28
2017-01-0130
Control of vehicle powertrain thermal management systems is becoming more challenging as the number of components is growing, and as a result, advanced control methods are being investigated. Model predictive control (MPC) is particularly interesting in this application because it provides a suitable framework to manage actuator and temperature constraints, and can potentially leverage preview information if available in the future. In previous SAE publications (2015-01-0336 and 2016-01-0215), a robust MPC control formulation was proposed, and both simulation and powertrain thermal lab test results were provided. In this work, we discuss the controller deployment in a vehicle; where controller validation is done through road driving and on a wind tunnel chassis dynamometer. This paper discusses challenges of linear MPC implementation related to nonlinearities in this over-actuated thermal system.
Journal Article

Using an Assembly Sequencing Application to React to a Production Constraint: a Case Study

2017-03-28
2017-01-0242
Ford Motor Company’s assembly plants build vehicles in a certain sequence. The planned sequence for the plant’s trim and final assembly area is developed centrally and is sent to the plant several days in advance. In this work we present the study of two cases where the plant changes the planned sequence to cope with production constraints. In one case, a plant pulls ahead two-tone orders that require two passes through the paint shop. This is further complicated by presence in the body shop area of a unidirectional rotating tool that allows efficient build of a sequence “A-B-C” but heavily penalizes a sequence “C-B-A”. The plant changes the original planned sequence in the body shop area to the one that satisfies both pull-ahead and rotating tool requirements. In the other case, a plant runs on lean inventories. Material consumption is tightly controlled down to the hour to match with planned material deliveries.
Journal Article

Data Driven Calibration Approach

2017-03-28
2017-01-0607
Designing a control system that can robustly detect faulted emission control devices under all environmental and driving conditions is a challenging task for OEMs. In order to gain confidence in the control strategy and the values of tunable parameters, the test vehicles need to be subjected to their limits during the development process. Complexity of modern powertrain systems along with the On-Board Diagnostic (OBD) monitors with multidimensional thresholds make it difficult to anticipate all the possible scenarios. Finding optimal solutions to these problems using traditional calibration processes can be time and resource intensive. A possible solution is to take a data driven calibration approach. In this method, a large amount of data is collected by collaboration of different groups working on the same powertrain. Later, the data is mined to find the optimum values of tunable parameters for the respective vehicle functions.
Journal Article

Aerodynamic Investigation of Cooling Drag of a Production Pickup Truck Part 1: Test Results

2018-04-03
2018-01-0740
The airflow that enters the front grille of a ground vehicle for the purpose of component cooling has a significant effect on aerodynamic drag. This drag component is commonly referred to as cooling drag, which denotes the difference in drag measured between open grille and closed grille conditions. When the front grille is closed, the airflow that would have entered the front grille is redirected around the body. This airflow is commonly referred to as cooling interference airflow. Consequently, cooling interference airflow can lead to differences in vehicle component drag; this component of cooling drag is known as cooling interference drag. One mechanism that has been commonly utilized to directly influence the cooling drag, by reducing the engine airflow, is active grille shutters (AGS). For certain driving conditions, the AGS system can restrict airflow from passing through the heat exchangers, which significantly reduces cooling drag.
Technical Paper

Engine Calibration Using Global Optimization Methods with Customization

2020-04-14
2020-01-0270
The automotive industry is subject to stringent regulations in emissions and growing customer demands for better fuel consumption and vehicle performance. Engine calibration, a process that optimizes engine performance by tuning engine controls (actuators), becomes challenging nowadays due to significant increase of complexity of modern engines. The traditional sweep-based engine calibration method is no longer sustainable. To tackle the challenge, this work considers two powerful global optimization methods: genetic algorithm (GA) and Bayesian optimization for steady-state engine calibration for single speed-load point. GA is a branch of meta-heuristic methods that has shown a great potential on solving difficult problems in automotive engineering. Bayesian optimization is an efficient global optimization method that solves problems with computationally expensive testing such as hyperparameter tuning in deep neural network (DNN), engine testing, etc.
Technical Paper

An Analysis of the Effects of Ventilation on Burn Patterns Resulting from Passenger Compartment Interior Fires

2020-04-14
2020-01-0923
Vehicle fire investigators often use the existence of burn patterns, along with the amount and location of fire damage, to determine the fire origin and its cause. The purpose of this paper is to study the effects of ventilation location on the interior burn patterns and burn damage of passenger compartment fires. Four similar Ford Fusion vehicles were burned. The fire origin and first material ignited were the same for all four vehicles. In each test, a different door window was down for the duration of the burn test. Each vehicle was allowed to burn until the windshield, back glass, or another window, other than the window used for ventilation, failed, thus changing the ventilation pattern. At that point, the fire was extinguished. Temperatures were measured at various locations in the passenger compartment. Video recordings and still photography were collected at all phases of the study.
Journal Article

Parameter Design Based FEA Correlation Studies on Automotive Seat Structures

2008-04-14
2008-01-0241
In recent years, the design of automotive components and assemblies have resulted in an over-reliance on advanced CAE tools especially the Finite Element Analysis. An emphasis on cost reduction and commonization of components in automotive industry has made it necessary to use the CAE tools in innovative ways. Use of FEA as a effective product development tool can be greatly enhanced if it provides a high degree of correlation with physical tests, thereby greatly limiting the investment in expensive prototypes and testing. This paper will discuss a robustness based methodology to realize effective correlation of finite element models with actual physical tests on automotive seat structure assembly, at a component, sub-system, and systems level. Based on a parameter design approach, the various factors that affect the degree of correlation between CAE models and physical tests will be described.
Journal Article

Optimized Engine Accessory Drive Resulting in Vehicle FE Improvement

2008-04-01
2008-01-2761
A belt driven Front End Accessory Drive (FEAD) is used to efficiently supply power to accessory components on automotive engines. The total energy absorbed by the FEAD consists of the accessory component requirements, the belt deformation and friction losses as well as the bearing losses. The accessory component torque requirements provide accessory function such as air conditioning, fluid pumping and electrical power generation. Alternatively, belt related torque losses are a significant parasitic loss, since they do not contribute any useful work. This paper will explain the source of energy loss in FEADs and outline a comprehensive strategy to reduce it. Test results comparing the effect of reduced friction on fuel consumption will be presented as well.
Journal Article

Vehicle Safety Communications - Applications: Multiple On-Board Equipment Testing

2011-04-12
2011-01-0586
The United States Department of Transportation (USDOT) and the Crash Avoidance Metrics Partnership-Vehicle Safety Communications 2 (CAMP-VSC2) Consortium (Ford, General Motors, Honda, Mercedes-Benz, and Toyota) initiated, in December 2006, a three-year collaborative effort in the area of wireless-based safety applications under the Vehicle Safety Communications-Applications (VSC-A) Project. The VSC-A Project developed and tested Vehicle-to-Vehicle (V2V) communications-based safety systems to determine if Dedicated Short Range Communications (DSRC) at 5.9 GHz, in combination with vehicle positioning, would improve upon autonomous vehicle-based safety systems and/or enable new communications-based safety applications.
Journal Article

A Component Test Methodology for Simulation of Full-Vehicle Side Impact Dummy Abdomen Responses for Door Trim Evaluation

2011-04-12
2011-01-1097
Described in this paper is a component test methodology to evaluate the door trim armrest performance in an Insurance Institute for Highway Safety (IIHS) side impact test and to predict the SID-IIs abdomen injury metrics (rib deflection, deflection rate and V*C). The test methodology consisted of a sub-assembly of two SID-IIs abdomen ribs with spine box, mounted on a linear bearing and allowed to translate in the direction of impact. The spine box with the assembly of two abdominal ribs was rigidly attached to the sliding test fixture, and is stationary at the start of the test. The door trim armrest was mounted on the impactor, which was prescribed the door velocity profile obtained from full-vehicle test. The location and orientation of the armrest relative to the dummy abdomen ribs was maintained the same as in the full-vehicle test.
Journal Article

Vehicle Powertrain Thermal Management System Using Model Predictive Control

2016-04-05
2016-01-0215
An advanced powertrain cooling system with appropriate control strategy and active actuators allows greater flexibility in managing engine temperatures and operating near constraints. An organized controls development process is necessary to allow comparison of multiple configurations to select the best way forward. In this work, we formulate, calibrate and validate a Model Predictive Controller (MPC) for temperature regulation and constraint handling in an advanced cooling system. A model-based development process was followed; where the system model was used to develop and calibrate a gain scheduled linear MPC. The implementation of MPC for continuous systems and the modification related to implementing switching systems has been described. Multiple hardware configurations were compared with their corresponding control system in simulations. The system level requirements were translated into MPC calibration parameters for consistent comparison between multiple configurations.
Technical Paper

Buzz Avoidance on Sunroof Light Sunshades: Design and Validation

2020-01-13
2019-36-0148
Sunroof is placed in certain high-end vehicles to give user a better driving experience. All automakers are searching alternatives to reduce weight and cost in the vehicle, in which sunroofs are also impacted. Some alternatives are already applied, as a honeycomb paper used in some sunshades that presents benefits, as less weight and with a good cost reduction. Although, due the reduced weight for this part produced in this material, it shows more susceptibility to reproduce the vibration that vehicle propagates in movement, especially in bad condition roads. The sunroof assembly is dependent of the roof reinforcement and roof skin, but in this special case, the validation could be done in the components itself because the interaction of the sunshades is directly dependent of the other sunroof parts, as rails and front frame.
Technical Paper

Implementation, Improvement and Statistical Validation of Scoring by Milling Process on an Instrument Panel with In-Mold Grain Lamination

2020-01-13
2019-36-0155
This paper starts describing the in-mold grain lamination and bilaminated film cover when applied to instrument panels with seamless passenger air bag doors. It then offers a comparison between two different PAB door weakening processes, the laser scoring and the scoring by milling. It further discuss the scoring by milling process and analyses its implementation on a real case instrument panel. In the implementation case, the scoring pattern is checked against a pre-defined engineering specification and correlated to the results of a drop tower test, which shows the force necessary to break the PAB door. Three iterations are performed until the results for scoring pattern and breaking force are achieved. The breaking force results are then statistically validated against the specification and capability analysis.
Technical Paper

Rattle Evaluation: Sunroof Glass Against Roof Flange

2020-01-13
2019-36-0140
Sunroof is installed in the vehicles to generate a better satisfaction for customer. Normally, the glass is maintained closed or fully opened, when the user would like to exterior air to get in. The glass runs in the sunroof rail that interacts directly with the roof skin and the roof reinforcement, where the whole sunroof structure is fixed. In general, sunroofs are equipped with two stages button, were the final or second stage, more used by users, allows the glass to move until the final position directly, without stops. Even though, the first stage could move the glass according user desire. For validation, the vehicle runs in several roads in order to capture any unusual response given by the sunroof. During specific test validation created, the glass was been positioned in the critical region that by design has the minimum distance against the roof flange.
Technical Paper

Robustness Design to Avoid Noise on Exterior Handle System

2020-01-13
2019-36-0137
Squeak and rattle are two undesirable occurrences during component operation and during vehicle driving condition, resulting in one of the top complains from costumers. One common grievance could happen during the user exterior handle operation and during side door closing. The exterior handle system during the operation could generate a squeak between interface parts, if materials and geometric tolerances was not been carefully designed. Also, vibration generated during door closing effort, might generate squeak between parts since the reinforcement for exterior handle touches the outer sheet metal internally. For this reason several guidelines might be included to avoid potential noise condition for this system during vehicle lifetime as correct material reduce friction between parts, taking into consideration the geometric condition between parts. Plus, coupling system on handles two pieces should also be evaluated to avoid squeak during use.
Technical Paper

Root Cause Identification and Methods of Reducing Rear Window Buffeting Noise

2007-05-15
2007-01-2402
Rear Window Buffeting (RWB) is the low-frequency, high amplitude, sound that occurs in many 4-door vehicles when driven 30-70 mph with one rear window lowered. The goal of this paper is to demonstrate that the mechanisms of RWB are similar to that of sun roof buffeting and to describe the results of several actions suspected in contributing to the severity of RWB. Finally, the results of several experiments are discussed that may lend insight into ways to reduce the severity of this event. A detailed examination of the side airflow patterns of a small Sport Utility Vehicle (SUV) shows these criteria exist on a small SUV, and experiments to modify the SUV airflow pattern to reduce RWB are performed with varying degrees of success. Based on the results of these experiments, design actions are recommended that may result in the reduction of RWB.
Technical Paper

Objective chime sound quality evaluation

2006-11-21
2006-01-2667
Customer perception of vehicle quality and safety is based on many factors. One important factor is the customers impression of the sounds produced by body and interior components such as doors, windows, seats, safety belts, windshield wipers, and other similar items like sounds generated automatically for safety and warning purposes. These sounds are typically harmonic or constant, and the relative level of perception, duration, multiplicity, and degree of concurrence of these sounds are elements that the customer will retain in an overall quality impression. Chime sounds are important to the customer in order to alert that something is not accomplished in a right way or for safe purposes. The chimes can be characterized by: sound level perception, frequency of the signal, shape of the signal, duration of the “beep” and the silence duration.
Technical Paper

A Parametric Approach for Vehicle Frame Structure Dynamics Analysis

2007-05-15
2007-01-2335
The capability to drive NVH quality into vehicle frame design is often compromised by the lack of available predictive tools that can be developed and applied within the timeframe during which key architectural design decisions are required. To address this need, a new parametric frame modeling approach was developed and is presented in this paper. This fully parameterized model is capable of fast modal, static stiffness & weight assessments, as well as DSA/optimization for frame design changes. This tool has been proven to be effective in improving speed, quality and impact of NVH hardware decisions.
X