Refine Your Search

Topic

Search Results

Technical Paper

High-Speed Imaging of a Vaporizing GDI Spray: A Comparison between Schlieren, Shadowgraph, DBI and Scattering

2020-04-14
2020-01-0326
Isooctane sprays from a multi-hole GDI injector were investigated in a constant volume chamber by means of high speed imaging techniques. The tests were performed under inert conditions (nitrogen), at temperatures and densities ranging between representative operating conditions of late injection, flash boiling and early injection in a GDI engine. The global parameters of the sprays were obtained by processing Schlieren, Shadowgraph, DBI and Mie-scattering images through an in-house image processing method. Thus, the boundaries of the spray vapor phase can be easily detected with great accuracy, regardless of whether Schlieren or the less sensitive shadowgraph imaging is used. Furthermore, the boundaries of the liquid phase were also obtained from shadowgraph images and compared with those obtained through DBI and scattering. The results show that the signature of the liquid phase in a shadowgraph image can be distinguished from that of the vaporized fuel.
Journal Article

Determination of Oxidation Characteristics and Studies on the Feasibility of Metallic Nanoparticles Combustion Under ICE-Like Conditions

2011-09-11
2011-24-0105
The present work relates to the investigation of the basic oxidation characteristics of iron and aluminium nanoparticles as well as the feasibility of their combustion under both Internal Combustion Engine (ICE)-like and real engine conditions. Based on a series of proof-of-concept experiments, combustion was found to be feasible taking place in a controllable way and bearing similarities to the respective case of conventional fuels. These studies were complimented by relevant in-situ and ex-situ/post-analysis, in order to elaborate the fundamental phenomena occurring during combustion as well as the extent and ‘quality’ of the process. The oxidation mechanisms of the two metallic fuels appear different and -as expected- the energy release during combustion of aluminium is significantly higher than that released in the case of iron.
Journal Article

Non-Intrusive Investigation in a Small GDI Optical Engine Fuelled with Gasoline and Ethanol

2011-04-12
2011-01-0140
The aim of this paper is the experimental investigation of the effect of direct fuel injection on the combustion process and pollutant formation in a spark ignition (SI) two-wheel engine. The engine is a 250cc single cylinder, four-stroke spark-ignition firstly equipped with a four-valve PFI head and then with GDI one operating with European commercial gasoline and Bio-ethanol. It is equipped with a wide sapphire window in the bottom of the chamber and quartz cylinder. In the combustion chamber, optical techniques based on 2D-digital imaging were used to follow the injection and flame propagation and spectroscopic measurements were carried out in order to evaluate the main radical species. Radical species such as OH and CH were detected and used to follow the chemical phenomena related to the fuel quality. Measurements were carried out at different engine speeds and combustion strategies based on different injection pressures.
Journal Article

Characterization of CH4 and CH4/H2 Mixtures Combustion in a Small Displacement Optical Engine

2013-04-08
2013-01-0852
In the last years, even more attention was paid to the alternative fuels which can allow both reducing the fuel consumption and the pollutant emissions. Among gaseous fuels, methane is considered one of the most interesting in terms of engine application. It represents an immediate advantage over other hydrocarbon fuels leading to lower CO₂ emissions; if compared to gasoline, CH₄ has wider flammable limits and better anti-knock properties, but lower flame speed. The addition of H₂ to CH₄ can improve the already good qualities of methane and compensate its weak points. In this paper a comparison was carried out between CH₄ and different CH₄/H₂ mixtures. The measurements were carried out in an optically accessible small single-cylinder, Port Fuel Injection spark ignition (PFI SI), four-stroke engine. It was equipped with the cylinder head of a commercial 250 cc motorcycle engine representative of the most popular two-wheel vehicles in Europe.
Journal Article

Full-Cycle CFD Modeling of Air/Fuel Mixing Process in an Optically Accessible GDI Engine

2013-09-08
2013-24-0024
This paper is focused on the development and application of a CFD methodology that can be applied to predict the fuel-air mixing process in stratified charge, sparkignition engines. The Eulerian-Lagrangian approach was used to model the spray evolution together with a liquid film model that properly takes into account its effects on the fuel-air mixing process into account. However, numerical simulation of stratified combustion in SI engines is a very challenging task for CFD modeling, due to the complex interaction of different physical phenomena involving turbulent, reacting and multiphase flows evolving inside a moving geometry. Hence, for a proper assessment of the different sub-models involved a detailed set of experimental optical data is required. To this end, a large experimental database was built by the authors.
Journal Article

Experimental and Numerical Investigation in a Turbocharged GDI Engine Under Knock Condition by Means of Conventional and Non-Conventional Methods

2015-04-14
2015-01-0397
The present paper deals with a comprehensive analysis of the knocking phenomenon through experiments and numerical simulations. Conventional and non-conventional measurements are performed on a 4-stroke, 4-cylinder, turbocharged GDI engine. The engine exhibits optical accesses to the combustion chamber. Imaging in the UV-visible range is carried out by means of a high spatial and temporal resolution camera through an endoscopic system and a transparent window in the piston head. This last is modified to allow the view of the whole combustion chamber almost until the cylinder walls, to include the so-called eng-gas zones. Optical data are correlated to in-cylinder pressure-based indicated analyses in a cycle resolved approach.
Journal Article

Characterization of Knock Tendency and Onset in a GDI Engine by Means of Conventional Measurements and a Non-Conventional Flame Dynamics Optical Analysis

2017-09-04
2017-24-0099
Gasoline direct injection (GDI) allows knock tendency reduction in spark-ignition engines mainly due to the cooling effect of the in-cylinder fuel evaporation. However, the charge formation and thus the injection timing and strategies deeply affect the flame propagation and consequently the knock occurrence probability and intensity. In particular, split injection allows a reduction of knock intensity by inducing different AFR gradient and turbulent energy distribution. Present work investigates the tendency to knock of a GDI engine at 1500 rpm full load under different injection strategies, single and double injections, obtained delivering the same amount of gasoline in two equal parts, the first during intake, the second during compression stroke. In these conditions, conventional and non-conventional measurements are performed on a 4-stroke, 4-cylinder, turbocharged GDI engine endowed of optical accesses to the combustion chamber.
Technical Paper

Sub-23 nm Particle Emissions from Gasoline Direct Injection Vehicles and Engines: Sampling and Measure

2020-04-14
2020-01-0396
Nowadays, the regulation regards only the particles larger than 23 nm. The attention is shifting towards the sub-23 nm particles because of their large presence at the exhaust of the modern engines and their negative impact on human health. The main challenge of the regulation of these particles is the definition of a proper procedure for their measure. The nature of the sub-23 nm particles is not well understood, and their measure is strongly affected by the sampling conditions leading to not reliable measure. The aim of this paper is to provide information on the emissions of sub-23 nm particles from GDI vehicles/engines. At the same time, the presence of volatiles, which mainly contribute to the formation of sub-23 nm particles, was evaluated and the effect of sampling conditions was investigated. The analysis was performed on a 1.8L GDI powered vehicle, widely used both in North America and Europe, and a 4-cylinder GDI engine, whose features are similar to those of the vehicle.
Technical Paper

Analysis of the Combustion Process of SI Engines Equipped with Non-Conventional Ignition System Architecture

2020-06-30
2020-37-0035
The use of lean or ultra-lean ratios is an efficient and proven strategy to reduce fuel consumption and pollutant emissions. However, the lower fuel concentration in the cylinder hinders the mixture ignition, requiring greater energy to start the combustion. The prechamber is an efficient method to provide high energy favoring the ignition process. It presents the potential to reduce the emission levels and the fuel consumption, operating with lean burn mixtures and expressive combustion stability. In this paper the analysis of the combustion process of SI engines equipped with an innovative architecture and operating in different injection modes was described. In particular, the effect of the prechamber ignition on the engine stability and the efficiency was investigated in stoichiometric and lean-burn operation conditions. The activity was carried out in two parts.
Technical Paper

Turbulent Jet Ignition Effect on Exhaust Emission and Efficiency of a SI Small Engine Fueled with Methane and Gasoline

2020-09-27
2020-24-0013
Pollutant emission of vehicle cars is nowadays a fundamental aspect to take into account. In the last decays, the company have been forced to study new solutions, such as alternative fuel and learn burn mixture strategy, to reduce the vehicle’s pollutants below the limits imposed by emission regulations. Pre-chamber ignition system presents potential reductions in emission levels and fuel consumption, operating with lean burn mixtures and alternative fuels. As alternative fuels, methane is considered one of the most interesting. It has wider flammable limits and better anti-knock properties than gasoline. Moreover, it is characterized by lower CO2 emissions. The aim of this work is to study the evolution of the plasma jets in a different in-cylinder conditions. The activity was carried out in a research optical small spark ignition engine equipped alternatively with standard ignition system and per-chamber.
Technical Paper

In-Cylinder Soot Formation and Exhaust Particle Emissions in a Small Displacement Spark Ignition Engine Operating with Ethanol Mixed and Dual Fueled with Gasoline

2017-03-28
2017-01-0653
This paper aims to correlate the in-cylinder soot formation and the exhaust particle emissions for different methods of gasoline/ethanol fueling in spark ignition engine. In particular, the engine was fueled with gasoline and ethanol separately and not, in this latter case both blended (E30) and dual fueled (EDF). For E30 the bend was direct injected and for EDF, the ethanol was injected in the combustion chamber and the gasoline into the intake duct. For both the injection configurations, the same percentage of ethanol in gasoline was supplied: 30%v/v. The measurements were carried out at 2000 and 4000 rpm, under full load, and stoichiometric condition, in small single cylinder optical engine. 2D-digital imaging was performed to follow the combustion process with a high spatial and temporal resolution through a full-bore optical piston. The two-color pyrometry was applied for the analysis of the in cylinder soot formation in the combustion chamber.
Technical Paper

Vapor and Liquid Phases of the ECN Spray G Impacting on a Flat Wall at Engine-Like Conditions

2016-10-17
2016-01-2199
Mixture formation is fundamental for the development of the combustion process in internal combustion engines, for the energy release, the consumption, and the pollutant formation. Concerning the spark ignition engines, the direct injection technology is being considered as an effective mean to achieve the optimal air-to-fuel ratio distribution at each operating condition, either through charge stratification around the spark plug and stoichiometric mixture under the high power requirements. Due to the highest injection pressures, the impact of a spray on the piston or on the cylinder walls causes the formation of liquid film (wall-film) and secondary atomization of the droplets. The wall-film could have no negligible size, especially where the mixture formation is realized under a wall-guided mode. The present work aims to report the effects of the ambient pressure and wall temperature on the macroscopic parameters of the spray impact on a wall.
Technical Paper

An Experimental and Numerical Investigation of GDI Spray Impact over Walls at Different Temperatures

2016-04-05
2016-01-0853
Internal combustion engines performance greatly depends on the air-fuel mixture formation and combustion processes. In gasoline direct injection (GDI) engines, in particular, the impact of the liquid spray on the piston or cylinder walls is a key factor, especially if mixture formation occurs under the so-called wall-guided mode. Impact causes droplets rebound and/or deposition of a liquid film (wallfilm). After being rebounded, droplets undergo what is called secondary atomization. The wallfilm may remain of no negligible size, so that fuel vapor rich zones form around it leading to so-called pool-flames (flames placed in the piston pit), hence to unburned hydrocarbons (HC) and particulate matter (PM) formation. A basic study of the spray-wall interaction is here performed by directing a multi-hole GDI spray against a real shape engine piston, possibly heated, under standard air conditions.
Technical Paper

Impinging Jets of Fuel on a Heated Surface: Effects of Wall Temperature and Injection Conditions

2016-04-05
2016-01-0863
In spark ignition engines, the nozzle design, fuel pressure, injection timing, and interaction with the cylinder/piston walls govern the evolution of the fuel spray inside the cylinder before the start of combustion. The fuel droplets, hitting the surface, may rebound or stick forming a film on the wall, or evaporate under the heat exchange effect. The face wetting results in a strong impact on the mixture formation and emission, in particular, on particulate and unburned hydrocarbons. This paper aims to report the effects of the injection pressure and wall temperature on the macroscopic behavior, atomization, and vaporization of impinging sprays on the metal surface. A mono-component fuel, iso-octane, was adopted in the spray-wall studies inside an optically-accessible quiescent vessel by imaging procedures using a Z-shaped schlieren-Mie scattering set-up in combination with a high-speed C-Mos camera.
Technical Paper

Iso-Octane Spray from a GDI Multi-Hole Injector under Non- and Flash Boiling Conditions

2017-10-08
2017-01-2319
GDI injection systems have become dominant in passenger cars due to their flexibility in managing and advantages in the fuel economy. With the increasingly stringent emissions regulations and concurrent requirements for enhanced engine thermal efficiency, a comprehensive characterization of the fuel spray behavior has become essential. Different engine loads produce in a variety of fuel supplying conditions that affect the air/fuel mixture preparation and influence the efficiency and pollutant production. The flash boiling is a particular state that occurs for peculiar thermodynamic conditions of the engine. It could strongly influence the mixture in sub-atmospheric environments with detrimental effects on emissions. In order to obtain an in-depth understanding of the flash boiling phenomena, it is necessary to study the parameters influencing the mixture formation and their appearance in diverse engine conditions.
Technical Paper

Experimental Analysis of O2 Addition on Engine Performance and Exhaust Emissions from a Small Displacement SI Engine

2016-04-05
2016-01-0697
In this paper, the effect of the oxygen addition on engine performance and exhaust emissions was investigated. The experimental study was carried out in a small single-cylinder PFI SI four-stroke engine. The addition of the 5% vol and 10% vol of oxygen was performed in the intake duct. Typical urban driving operating conditions were investigated. The engine emissions were characterized by means of gaseous analyzers and a smokemeter. Particle size distribution function was measured in the size range from 5.6 to 560 nm by means of an Engine Exhaust Particle Sizer (EEPS). An improvement in terms of engine power output, without BSFC penalty, and HC emissions with oxygen addition was observed at all the investigated operating conditions. On the other hand, NOx and PM emissions increase.
Technical Paper

Use of Renewable Oxygenated Fuels in Order to Reduce Particle Emissions from a GDI High Performance Engine

2011-04-12
2011-01-0628
The use of oxygenated and renewable fuels is nowadays a widespread means to reduce regulated pollutant emissions produced by internal combustion engines, as well as to reduce the greenhouse impact of transportation. Besides PM, NOx and HC emissions, also the size distribution of particles emitted at the engine exhaust represent meaningful information, considering its adverse effects on the environment and human health. In this work, the results of a comprehensive investigation on the combustion characteristics and the exhaust emissions of a GDI high performance engine, fuelled with pure bio-ethanol and European gasoline, are shown. The engine is a 4-cylinder, 4-stroke, 1750 cm₃ displacement, and turbocharged. The engine was operated at different speed/load conditions and two fuel injection strategies were investigated: homogeneous charge mode and stratified charge mode.
Technical Paper

Particle Formation and Emissions in an Optical Small Displacement SI Engine Dual Fueled with CNG DI and Gasoline PFI

2017-09-04
2017-24-0092
Fuel depletion as well as the growing concerns on environmental issues prompt to the use of more eco-friendly fuels. The compressed natural gas (CNG) is considered one of the most promising alternative fuel for engine applications because of the lower emissions. Nevertheless, recent studies highlighted the presence of ultrafine particle emissions at the exhaust of CNG engines. The present study aims to investigate the effect of CNG on particle formation and emissions when it was direct injected and when it was dual fueled with gasoline. In this latter case, the CNG was direct injected and the gasoline port fuel injected. The study was carried out on a transparent single cylinder SI engine in order to investigate the in-cylinder process by real time non-intrusive diagnostics. In-cylinder 2D chemiluminescence measurements from UV to visible were carried out.
Technical Paper

Optical Characterization of Methane Combustion in a Four Stroke Engine for Two Wheel Application

2012-04-16
2012-01-1150
In the urban area the internal combustion engines are the main source of CO₂, NO and particulate matter (PM) emissions. The reduction of these emissions is no more an option, but a necessity highlighted by the even stricter emission standards. In the last years, even more attention was paid to the alternative fuels. They allow both reducing the fuel consumption and the pollutant emissions. With regards to the gaseous fuels, methane is considered one of the most interesting in terms of engine application. It represents an immediate advantage over other hydrocarbon fuels because of the lower C/H ratio. In this paper the effect of the methane on the combustion process, the pollutant emissions and the engine performance was analyzed. The measurements were carried out in an optically accessible single-cylinder, Port Fuel Injection, four-stroke SI engine equipped with the cylinder head of a commercial 250 cc motorcycles engine and fuelled both with gasoline and methane.
Technical Paper

Experimental and Numerical Investigation of the Idle Operating Engine Condition for a GDI Engine

2012-04-16
2012-01-1144
The increased limitations to both NOx and soot emissions have pushed engine researchers to rediscover gasoline engines. Among the many technologies and strategies, gasoline direct injection plays a key-role for improving fuel economy and engine performance. The paper aims to investigate an extremely complex task such as the idle operating engine condition when the engine runs at very low engine speeds and low engine loads and during the warm-up. Due to the low injection pressure and to the null contribution of the turbocharger, the engine condition is far from the standard points of investigation. Taking into account the warm-up engine condition, the analyses are performed with a temperature of the coolant of 50°C. The paper reports part of a combined numerical and experimental synergic activity aiming at the understanding of the physics of spray/wall interaction within the combustion chamber and particular care is used for air/fuel mixing and the combustion process analyses.
X