Refine Your Search

Topic

Search Results

Journal Article

TMF Life Prediction of High Temperature Components Made of Cast Iron HiSiMo: Part II: Multiaxial Implementation and Component Assessment

2014-04-01
2014-01-0905
HiSiMo cast irons are frequently used as material for high temperature components in engines as e.g. exhaust manifolds and turbo chargers. These components must withstand severe cyclic mechanical and thermal loads throughout their life cycle. The combination of thermal transients with mechanical load cycles results in a complex evolution of damage, leading to thermomechanical fatigue (TMF) of the material and, after a certain number of loading cycles, to failure of the component. In Part I of the paper, a fracture mechanics model for TMF life prediction was developed based on results of uniaxial tests. In this paper (Part II), the model is formulated for three-dimensional stress states, so that it can be applied in a post-processing step of a finite-element analysis. To obtain reliable stresses and (time dependent plastic) strains in the finite-element calculation, a time and temperature dependent plasticity model is applied which takes non-linear kinematic hardening into account.
Journal Article

Efficient Re-Analysis Methodology for Probabilistic Vibration of Large-Scale Structures

2008-04-14
2008-01-0216
It is challenging to perform probabilistic analysis and design of large-scale structures because probabilistic analysis requires repeated finite element analyses of large models and each analysis is expensive. This paper presents a methodology for probabilistic analysis and reliability based design optimization of large scale structures that consists of two re-analysis methods; one for estimating the deterministic vibratory response and another for estimating the probability of the response exceeding a certain level. The deterministic re-analysis method can analyze efficiently large-scale finite element models consisting of tens or hundreds of thousand degrees of freedom and large numbers of design variables that vary in a wide range. The probabilistic re-analysis method calculates very efficiently the system reliability for many probability distributions of the design variables by performing a single Monte Carlo simulation.
Journal Article

Ionization Signal Response during Combustion Knock and Comparison to Cylinder Pressure for SI Engines

2008-04-14
2008-01-0981
In-cylinder ion sensing is a subject of interest due to its application in spark-ignited (SI) engines for feedback control and diagnostics including: combustion knock detection, rate and phasing of combustion, and mis-fire On Board Diagnostics (OBD). Further advancement and application is likely to continue as the result of the availability of ignition coils with integrated ion sensing circuitry making ion sensing more versatile and cost effective. In SI engines, combustion knock is controlled through closed loop feedback from sensor metrics to maintain knock near the borderline, below engine damage and NVH thresholds. Combustion knock is one of the critical applications for ion sensing in SI engines and improvement in knock detection offers the potential for increased thermal efficiency. This work analyzes and characterizes the ionization signal in reference to the cylinder pressure signal under knocking and non-knocking conditions.
Journal Article

Optimization of a Forged Steel Crankshaft Subject to Dynamic Loading

2008-04-14
2008-01-0432
In this study a dynamic simulation was conducted on a forged steel crankshaft from a single cylinder four stroke engine. Finite element analysis was performed to obtain the variation of the stress magnitude at critical locations. The dynamic analysis resulted in the development of the load spectrum applied to the crankpin bearing. This load was then applied to the FE model and boundary conditions were applied according to the engine mounting conditions. Results obtained from the aforementioned analysis were then used in optimization of the forged steel crankshaft. Geometry, material, and manufacturing processes were optimized using different geometric constraints, manufacturing feasibility, and cost. The first step in the optimization process was weight reduction of the component considering dynamic loading. This required the stress range under dynamic loading not to exceed the magnitude of the stress range in the original crankshaft.
Technical Paper

Refining Vibration Quality - A Study Characterizing Vehicle/Operator Interface Vibration on Snowmobiles and ATVs

2007-05-15
2007-01-2389
Sensory jury testing was utilized to characterize vibration levels perceived by the operator, with respect to levels measured using instrumentation, in order to develop a tool for the evaluation of vibration at the operator interfaces. Details of the jury testing and jury data processing method are highlighted as well as the refinement of vibration characterization for a specific application. The vibration at user interface locations of both snowmobiles and ATVs was measured along with subjective feedback from a panel of jurists. Statistical analysis was performed on the jury data to provide both a qualitative and quantitative number to represent the opinion of the jury. Correlations were developed between the measured levels of vibration and the opinions of the jury. Finally, a set of correlation functions suitable for design predictions was developed.
Technical Paper

Dynamic Load and Stress Analysis of a Crankshaft

2007-04-16
2007-01-0258
In this study a dynamic simulation was conducted on a crankshaft from a single cylinder four stroke engine. Finite element analysis was performed to obtain the variation of stress magnitude at critical locations. The pressure-volume diagram was used to calculate the load boundary condition in dynamic simulation model, and other simulation inputs were taken from the engine specification chart. The dynamic analysis was done analytically and was verified by simulation in ADAMS which resulted in the load spectrum applied to crank pin bearing. This load was applied to the FE model in ABAQUS, and boundary conditions were applied according to the engine mounting conditions. The analysis was done for different engine speeds and as a result critical engine speed and critical region on the crankshaft were obtained. Stress variation over the engine cycle and the effect of torsional load in the analysis were investigated.
Technical Paper

Assessment of Imprecise Reliability Using Efficient Probabilistic Reanalysis

2007-04-16
2007-01-0552
In reliability design, often, there is scarce data for constructing probabilistic models. Probabilistic models whose parameters vary in known intervals could be more suitable than Bayesian models because the former models do not require making assumptions that are not supported by the available evidence. If we use models whose parameters vary in intervals we need to calculate upper and lower bounds of the failure probability (or reliability) of a system in order to make design decisions. Monte Carlo simulation can be used for this purpose, but it is too expensive for all but very simple systems. This paper proposes an efficient Monte-Carlo simulation approach for estimation of upper and lower probabilities. This approach is based on two ideas: a) use an efficient approach for reliability reanalysis of a system, which is introduced in this paper, and b) approximate the probability distribution of the minimum and maximum failure probabilities using extreme value statistics.
Technical Paper

Complementary Intersection Method (CIM) for System Reliability Analysis

2007-04-16
2007-01-0558
Researchers desire to evaluate system reliability uniquely and efficiently. Despite its strong technical demand, little progress has been made on system reliability analysis in the last two decades. Up to now, bound methods for system reliability prediction have been dominant. For system reliability bounds, the second order bound method gives fairly accurate prediction for system reliability assuming that the probabilities of second-order joint events are accurately obtained. Two primary challenges in system reliability analysis are evaluation of the probabilities of second-order joint events and no unique system reliability for design optimization. Firstly, the greatest technical demand is found in an accurate and efficient method to numerically evaluate the probability of a second-order joint event.
Technical Paper

Innovative Six Sigma Design Using the Eigenvector Dimension-Reduction (EDR) Method

2007-04-16
2007-01-0799
This paper presents an innovative approach for quality engineering using the Eigenvector Dimension Reduction (EDR) Method. Currently industry relies heavily upon the use of the Taguchi method and Signal to Noise (S/N) ratios as quality indices. However, some disadvantages of the Taguchi method exist such as, its reliance upon samples occurring at specified levels, results to be valid at only the current design point, and its expensiveness to maintain a certain level of confidence. Recently, it has been shown that the EDR method can accurately provide an analysis of variance, similar to that of the Taguchi method, but is not hindered by the aforementioned drawbacks of the Taguchi method. This is evident because the EDR method is based upon fundamental statistics, where the statistical information for each design parameter is used to estimate the uncertainty propagation through engineering systems.
Technical Paper

Reliability Estimation of Large-Scale Dynamic Systems by using Re-analysis and Tail Modeling

2009-04-20
2009-01-0200
Probabilistic studies can be prohibitively expensive because they require repeated finite element analyses of large models. Re-analysis methods have been proposed with the premise to estimate accurately the dynamic response of a structure after a baseline design has been modified, without recalculating the new response. Although these methods increase computational efficiency, they are still not efficient enough for probabilistic analysis of large-scale dynamic systems with low failure probabilities (less or equal to 10-3). This paper presents a methodology that uses deterministic and probabilistic re-analysis methods to generate sample points of the response. Subsequently, tail modeling is used to estimate the right tail of the response PDF and the probability of failure a highly reliable system. The methodology is demonstrated on probabilistic vibration analysis of a realistic vehicle FE model.
Technical Paper

Imprecise Reliability Assessment When the Type of the Probability Distribution of the Random Variables is Unknown

2009-04-20
2009-01-0199
In reliability design, often, there is scarce data for constructing probabilistic models. It is particularly challenging to model uncertainty in variables when the type of their probability distribution is unknown. Moreover, it is expensive to estimate the upper and lower bounds of the reliability of a system involving such variables. A method for modeling uncertainty by using Polynomial Chaos Expansion is presented. The method requires specifying bounds for statistical summaries such as the first four moments and credible intervals. A constrained optimization problem, in which decision variables are the coefficients of the Polynomial Chaos Expansion approximation, is formulated and solved in order to estimate the minimum and maximum values of a system’s reliability. This problem is solved efficiently by employing a probabilistic re-analysis approach to approximate the system reliability as a function of the moments of the random variables.
Technical Paper

Impact Identification Using Smart Material Sensors

2001-03-05
2001-01-0615
The crash performance of an automobile largely depends on the ability to identity impact damage, maintain the passenger safety through deployment of various safety restraint systems, and steer away the vehicle from impact. So, this work is focused on the impact response of an automobile structure so as to find the location, magnitude of impact and asses the severity of damage. The results of the developed generalized forward plate model compared within 2% for FEM and previous other theoretical approaches. The inverse model compared within 7% for location and reconstructed force. Damage severity assessment is also investigated.
Technical Paper

The Effects of Different Input Excitation on the Dynamic Characterization of an Automotive Shock Absorber

2001-04-30
2001-01-1442
This paper deals with the dynamic characterization of an automotive shock absorber, a continuation of an earlier work [1]. The objective of this on-going research is to develop a testing and analysis methodology for obtaining dynamic properties of automotive shock absorbers for use in CAE-NVH low-to-mid frequency chassis models. First, the effects of temperature and nominal length on the stiffness and damping of the shock absorber are studied and their importance in the development of a standard test method discussed. The effects of different types of input excitation on the dynamic properties of the shock absorber are then examined. Stepped sine sweep excitation is currently used in industry to obtain shock absorber parameters along with their frequency and amplitude dependence. Sine-on-sine testing, which involves excitation using two different sine waves has been done in this study to understand the effects of the presence of multiple sine waves on the estimated dynamic properties.
Technical Paper

Modeling Approach for a Wiremesh Substrate in CFD Simulation

2017-03-28
2017-01-0971
Experimental studies have shown that knitted wiremesh mixers reduce the formation of solid deposits and improve ammonia homogenization in automotive SCR systems. However, their implementation in CFD models remains a major challenge due to the complex WM geometry. It was the aim of the current study to investigate droplet WM interaction. Essential processes, such as secondary droplet generation, wall film formation, and heat exchange, were analyzed in detail and a numerical model was set up. A box with heat resisting glass was used to study urea-water solution spray impingement on a WM under a wide range of operating conditions. High speed videography was used to identify the impingement regimes. Infrared thermography was applied to investigate WM cooling. In order to determine the impact of the WM on the spray characteristics, the droplet spectrum was measured both upstream and downstream of the WM using the laser diffraction method.
Technical Paper

Engine Sound Source Characterization Based on Inverse Numerical Acoustics

2021-08-31
2021-01-1024
Inverse Numerical Acoustics (INA) is the process by which the measurements of the sound pressure near a vibrating object, such as an engine, can be used to reconstruct the surface velocities of the object. This is required when it is difficult to conduct measurement on the structure or when the full structural FE model is not available. In such scenarios, the INA technique allows to back calculate the operational vibrations based on operational near field pressure measurements. When the surface velocities of a vibrating object are known which are independent of the boundary conditions, then the object can be used as a source in any application to compute the sound pressure levels in the surrounding (far field). This paper describes an experimental procedure that relies on INA to characterize an engine noise source in this manner. To this end, a robotic manipulator first measured sound pressures at multiple points in the near acoustic field.
Technical Paper

Fatigue Life Comparisons of Competing Manufacturing Processes: A Study of Steering Knuckle

2004-03-08
2004-01-0628
A vehicle steering knuckle undergoes time-varying loadings during its service life. Fatigue behavior is, therefore, a key consideration in its design and performance evaluation. This research program aimed to assess fatigue life and compare fatigue performance of steering knuckles made from three materials of different manufacturing processes. These include forged steel, cast aluminum, and cast iron knuckles. In light of the high volume of forged steel vehicle components, the forging process was considered as base for investigation. Monotonic and strain-controlled fatigue tests of specimens machined from the three knuckles were conducted. Static as well as baseline cyclic deformation and fatigue properties were obtained and compared. In addition, a number of load-controlled fatigue component tests were conducted for the forged steel and cast aluminum knuckles. Finite element models of the steering knuckles were also analyzed to obtain stress distributions in each component.
Technical Paper

A Variable Displacement Engine with Independently Controllable Stroke Length and Compression Ratio

2006-04-03
2006-01-0741
A variable displacement engine with the capability to vary stroke length and compression ratio independent of one another has been designed, prototyped, and successfully operated. Reasons for investigation of such an engine are the potential for improvement in fuel economy and/or performance. Literature has shown that engines with variable compression ratio can significantly decrease specific fuel consumption. Engines with variability in stroke length can maintain peak efficiency running conditions by adjusting power output through displacement change verses through the efficiency detriment of throttling. The project began with the synthesis of a planar 2-dimensional rigid body mechanism. Various synthesis techniques were employed and design took place with a collection of computer software. MATLAB code performed much of the synthesis, kinematic, and dynamic analysis.
Technical Paper

Design and Optimization of Steering Assembly for Baja ATV Vehicle

2023-04-11
2023-01-0161
The steering assembly is a part of an automotive suspension system that provides control and stability. It provides control of direction, stability, and control over placement of the car. Optimization of the vehicle in weight results in enhanced performance and low fuel consumption, more so for an all-terrain race car. Optimization in this paper loosely refers to weight reduction and achieving the optimum stiffness to weight ratio of each component. This research encompasses various aspects linked to conceptualizing, designing, analysing, optimizing, and finally manufacturing the steering sub-system. Analytical calculations for mechanical design were performed using data from various experiments and jigs. CAD was developed using SolidWorks, and various analyses were performed using Altair HyperWorks. Finite Element Analysis (FEA) was primarily used to build stress plots and locate weak spots aiding optimization.
Technical Paper

A Data-Driven Approach to Determine the Single Droplet Post-Impingement Pattern on a Dry Wall Using Statistical Machine Learning Classification Methods

2021-04-06
2021-01-0552
The study of spray-wall interaction is of great importance to understand the dynamics during fuel-surface impingement process in modern internal combustion engines. The identification of droplet post-impingement pattern (contact, transition, non-contact) and droplet characteristics can quantitatively provide an estimation of energy transfer for spray-wall interaction, thus further influencing air-fuel mixing and emissions under combusting conditions. Theoretical criteria of single droplet post-impingement pattern on a dry wall have been experimentally and numerically studied by many researchers to quantify the hydrodynamic droplet behaviors. However, apart from model fidelity, another issue is the scalability. A theoretical criterion developed from one case might not be well suited to another scenario. In this paper, a data-driven approach for single droplet-dry wall post-impingement pattern utilizing arithmetical machine learning classification methods is proposed and demonstrated.
Technical Paper

Statistical Models of RADAR and LIDAR Returns from Deer for Active Safety Systems

2016-04-05
2016-01-0113
Based on RADAR and LiDAR measurements of deer with RADAR and LiDAR in the Spring and Fall of 2014 [1], we report the best fit statistical models. The statistical models are each based on time-constrained measurement windows, termed test-points. Details of the collection method were presented at the SAE World Congress in 2015. Evaluation of the fitness of various statistical models to the measured data show that the LiDAR intensity of reflections from deer are best estimated by the extreme value distribution, while the RCS is best estimated by the log-normal distribution. The value of the normalized intensity of the LiDAR ranges from 0.3 to 1.0, with an expected value near 0.7. The radar cross-section (RCS) varies from -40 to +10 dBsm, with an expected value near -14 dBsm.
X