Refine Your Search

Search Results

Viewing 1 to 12 of 12
Technical Paper

Utilization of Vehicle Connectivity for Improved Energy Consumption of a Speed Harmonized Cohort of Vehicles

2020-04-14
2020-01-0587
Improving vehicle response through advanced knowledge of traffic behavior can lead to large improvements in energy consumption for the single isolated vehicle. This energy savings across multiple vehicles can even be larger if they travel together as a cohort in harmonization. Additionally, if the vehicles have enough information about their immediate path of travel, and other vehicles’ in that path (and their respective critical forward-looking information), they can safely drive close enough to each other to share aerodynamic load. These energy savings can be upwards of multiple percentage points, and are dependent on several criteria. This analysis looks at criteria that contributes to energy savings for a cohort of vehicles in synchronous motion, as well as describes a study that allows for better understanding of the potential benefits of different types of cohorted vehicles in different platoon arrangements.
Journal Article

The Model Integration and Hardware-in-the-Loop (HiL) Simulation Design for the Analysis of a Power-Split Hybrid Electric Vehicle with Electrochemical Battery Model

2017-03-28
2017-01-0001
This paper studies the hardware-in-the-loop (HiL) design of a power-split hybrid electric vehicle (HEV) for the research of HEV lithiumion battery aging. In this paper, an electrochemical model of a lithium-ion battery pack with the characteristics of battery aging is built and integrated into the vehicle model of Autonomie® software from Argonne National Laboratory. The vehicle model, together with the electrochemical battery model, is designed to run in a dSPACE real-time simulator while the powertrain power distribution is managed by a dSPACE MicroAutoBoxII hardware controller. The control interface is designed using dSPACE ControlDesk to monitor the real-time simulation results. The HiL simulation results with the performance of vehicle dynamics and the thermal aging of the battery are presented and analyzed.
Technical Paper

A Connected Controls and Optimization System for Vehicle Dynamics and Powertrain Operation on a Light-Duty Plug-In Multi-Mode Hybrid Electric Vehicle

2020-04-14
2020-01-0591
This paper presents an overview of the connected controls and optimization system for vehicle dynamics and powertrain operation on a light-duty plug-in multi-mode hybrid electric vehicle developed as part of the DOE ARPA-E NEXTCAR program by Michigan Technological University in partnership with General Motors Co. The objective is to enable a 20% reduction in overall energy consumption and a 6% increase in electric vehicle range of a plug-in hybrid electric vehicle through the utilization of connected and automated vehicle technologies. Technologies developed to achieve this goal were developed in two categories, the vehicle control level and the powertrain control level. Tools at the vehicle control level include Eco Routing, Speed Harmonization, Eco Approach and Departure and in-situ vehicle parameter characterization.
Technical Paper

Integration of OpenADR with Node-RED for Demand Response Load Control Using Internet of Things Approach

2017-03-28
2017-01-1702
The increased market share of electric vehicles and renewable energy resources have raised concerns about their impact on the current electrical distribution grid. To achieve sustainable and stable power distribution, a lot of effort has been made to implement smart grids. This paper addresses Demand Response (DR) load control in a smart grid using Internet of Things (IoT) technology. A smart grid is a networked electrical grid which includes a variety of components and sub-systems, including renewable energy resources, controllable loads, smart meters, and automation devices. An IoT approach is a good fit for the control and energy management of smart grids. Although there are various commercial systems available for smart grid control, the systems based on open sources are limited. In this study, we adopt an open source development platform named Node-RED to integrate DR capabilities in a smart grid for DR load control. The DR system employs the OpenADR standard.
Technical Paper

Model-Based Analysis of V2G Impact on Battery Degradation

2017-03-28
2017-01-1699
Vehicle-to-Grid (V2G) service has a potential to improve the reliability and stability of the electrical grid due to the ability of providing bi-directional power flow from/to the grid. However, frequent charging/discharging may impact the battery lifetime. This paper presents the analysis of battery degradation in three scenarios. In the first scenario, different battery capacities are considered. In the second scenario, the battery degradation with various depth of discharge (DOD) are studied. In the third scenario, the capacity loss due to different charging regime are compared. The charging/discharging of plug-in electric vehicles (PEVs) are simulated in a single-phase microgrid system integrated with a photovoltaics (PV) farm, an energy storage system (ESS), and ten electric vehicle service equipment (EVSE). The battery degradation model is an energy throughput model, which is developed based on the Arrhenius equation and a power law relationship between time and capacity fading.
Technical Paper

Nonlinear Model Predictive Control of a Power-Split Hybrid Electric Vehicle with Electrochemical Battery Model

2017-03-28
2017-01-1252
This paper studies the nonlinear model predictive control for a power-split Hybrid Electric Vehicle (HEV) power management system to improve the fuel economy. In this paper, a physics-based battery model is built and integrated with a base HEV model from Autonomie®, a powertrain and vehicle model architecture and development software from Argonne National Laboratory. The original equivalent circuit battery model from the software has been replaced by a single particle electrochemical lithium ion battery model. A predictive model that predicts the driver’s power request, the battery state of charge (SOC) and the engine fuel consumption is studied and used for the nonlinear model predictive controller (NMPC). A dedicated NMPC algorithm and its solver are developed and validated with the integrated HEV model. The performance of the NMPC algorithm is compared with that of a rule-based controller.
Technical Paper

Determination of Vehicle Frontal Area Using Image Processing

2013-04-08
2013-01-0203
The projected frontal area of a vehicle has a significant impact on aerodynamic drag, and thus is an important parameter, for vehicle development, benchmarking, and modeling. However, determining vehicle frontal area can be tedious, time consuming, expensive, or inaccurate. Existing methods include analysis of engineering drawings, vehicle projections, 3D scanners, planimeter measurements from photographs, and estimations using vehicle dimensions. Currently accepted approximation methods can be somewhat unreliable. This study focuses on introducing a method to find vehicle frontal area using digital images and subtraction functions via MATLABs' Image Processing Toolbox. In addition to an overview of the method, this paper describes several variables that were examined to optimize and improve the process such as camera position, surface glare, and vehicle shadow effects.
Technical Paper

Simulation of Lithium Ion HEV Battery Aging Using Electrochemical Battery Model under Different Ambient Temperature Conditions

2015-04-14
2015-01-1198
This paper investigates the aging performance of the lithium ion cobalt oxide battery pack of a single shaft parallel hybrid electric vehicle (HEV) under different ambient temperatures. Varying ambient temperature of HEVs results in different battery temperature and then leads to different aging performance of the battery pack. Battery aging is reflected in the increasing of battery internal resistance and the decreasing of battery capacity. In this paper, a single shaft parallel hybrid electric vehicle model is built by integrating Automotive Simulation Model (ASM) from dSPACE and AutoLion-ST battery model from ECPower to realize the co-simulation of HEV powertrain in the common MATLAB/Simulink platform. The battery model is a physics-based and thermally-coupled battery (TCB) model, which enables the investigation of battery capacity degradation and aging. Standard driving cycle with differing ambient temperatures is tested using developed HEV model.
Technical Paper

PHEV Real World Driving Cycle Energy and Fuel and Consumption Reduction Potential for Connected and Automated Vehicles

2019-04-02
2019-01-0307
This paper presents real-world driving energy and fuel consumption results for the second-generation Chevrolet Volt plug-in hybrid electric vehicle (PHEV). A drive cycle, local to Michigan Technological University, was designed to mimic urban and highway driving test cycles in terms of distance, transients and average velocity, but with significant elevation changes to establish an energy intensive real-world driving cycle for assessing potential energy savings for connected and automated vehicle (CAV) control. The investigation began by establishing baseline and repeatability of energy consumption at various battery states of charge. It was determined that drive cycle energy consumption under a randomized set of boundary conditions varied within 3.6% of mean energy consumption regardless of initial battery state of charge.
Technical Paper

Route-Optimized Energy Management of Connected and Automated Multi-Mode Plug-In Hybrid Electric Vehicle Using Dynamic Programming

2019-04-02
2019-01-1209
This paper presents a methodology to optimize the blending of charge-depleting (CD) and charge-sustaining (CS) modes in a multi-mode plug-in hybrid electric vehicle (PHEV) that reduces overall energy consumption when the selected route cannot be completely driven in all-electric mode. The PHEV used in this investigation is the second-generation Chevrolet Volt and as many as four instrumented vehicles were utilized simultaneously on road to acquire validation data. The optimization method used is dynamic programming (DP) paired with a reduced-order powertrain model to enable onboard embedded controller compatibility and computational efficiency in optimally blending CD, CS modes over the entire drive route.
Technical Paper

Model Integration and Hardware-in-the-Loop (HiL) Simulation Design for the Testing of Electric Power Steering Controllers

2016-04-05
2016-01-0029
The Electronic Control Unit (ECU) of an Electric Power Steering (EPS) system is a core device to decide how much assistance an electric motor applies on a steering wheel. The EPS ECU plays an important role in EPS systems. The effectiveness of an ECU needs to be thoroughly tested before mass production. Hardware-in-the-loop simulation provides an efficient way for the development and testing of embedded controllers. This paper focuses on the development of a HiL system for testing EPS controllers. The hardware of the HiL system employs a dSPACE HiL simulator. The EPS plant model is an integrated model consisting of a Vehicle Dynamics model of the dSPACE Automotive Simulation Model (ASM) and the Nexteer Steering model. The paper presents the design of an EPS HiL system, the simulation of sensors and actuators, the functions of the ASM Vehicle Dynamics model, and the integration method of the ASM Vehicle Dynamics model with a Steering model.
Technical Paper

Route-Optimized Energy Usage for a Plug-in Hybrid Electric Vehicle Using Mode Blending

2024-04-09
2024-01-2775
This paper presents a methodology to optimize the blending of charge-depleting (CD) and charge-sustaining (CS) modes in a multi-mode plug-in hybrid electric vehicle (PHEV). The objective of the optimization is to best utilize onboard energy for minimum overall energy consumption based on speed and elevation profile. The optimization reduces overall energy consumption when the selected route cannot be completely driven in all-electric mode. The optimization method splits drive cycles into constant distance segments and then uses a reduced-order model to sort the segments by the best use of battery energy vs. fuel energy. The PHEV used in this investigation is the Stellantis Pacifica. Results support energy savings up to 20% which depend on the route and initial battery State of Charge (SOC). Initial optimization takes 1 second for 38 km and 3 seconds for 154 km.
X