Refine Your Search

Topic

Author

Search Results

Journal Article

Investigating Through Simulation the Mobility of Light Tracked Vehicles Operating on Discrete Granular Terrain

2013-04-08
2013-01-1191
This paper presents a computational framework for the physics-based simulation of light vehicles operating on discrete terrain. The focus is on characterizing through simulation the mobility of vehicles that weigh 1000 pounds or less, such as a reconnaissance robot. The terrain is considered to be deformable and is represented as a collection of bodies of spherical shape. The modeling stage relies on a novel formulation of the frictional contact problem that requires at each time step of the numerical simulation the solution of an optimization problem. The proposed computational framework, when run on ubiquitous Graphics Processing Unit (GPU) cards, allows the simulation of systems in which the terrain is represented by more than 0.5 million bodies leading to problems with more than one million degrees of freedom.
Journal Article

Reduction of Steady-State CFD HVAC Simulations into a Fully Transient Lumped Parameter Network

2014-05-10
2014-01-9121
Since transient vehicle HVAC computational fluids (CFD) simulations take too long to solve in a production environment, the goal of this project is to automatically create a lumped-parameter flow network from a steady-state CFD that solves nearly instantaneously. The data mining algorithm k-means is implemented to automatically discover flow features and form the network (a reduced order model). The lumped-parameter network is implemented in the commercial thermal solver MuSES to then run as a fully transient simulation. Using this network a “localized heat transfer coefficient” is shown to be an improvement over existing techniques. Also, it was found that the use of the clustering created a new flow visualization technique. Finally, fixing clusters near equipment newly demonstrates a capability to track localized temperatures near specific objects (such as equipment in vehicles).
Journal Article

Enhancing Decision Topology Assessment in Engineering Design

2014-04-01
2014-01-0719
Implications of decision analysis (DA) on engineering design are important and well-documented. However, widespread adoption has not occurred. To that end, the authors recently proposed decision topologies (DT) as a visual method for representing decision situations and proved that they are entirely consistent with normative decision analysis. This paper addresses the practical issue of assessing the DTs of a designer using their responses. As in classical DA, this step is critical to encoding the DA's preferences so that further analysis and mathematical optimization can be performed on the correct set of preferences. We show how multi-attribute DTs can be directly assessed from DM responses. Furthermore, we show that preferences under uncertainty can be trivially incorporated and that topologies can be constructed using single attribute topologies similarly to multi-linear functions in utility analysis. This incremental construction simplifies the process of topology construction.
Technical Paper

An Analytical Energy-budget Model for Diesel Droplet Impingement on an Inclined Solid Wall

2020-04-14
2020-01-1158
The study of spray-wall interaction is of great importance to understand the dynamics that occur during fuel impingement onto the chamber wall or piston surfaces in internal combustion engines. It is found that the maximum spreading length of an impinged droplet can provide a quantitative estimation of heat transfer and energy transformation for spray-wall interaction. Furthermore, it influences the air-fuel mixing and hydrocarbon and particle emissions at combusting conditions. In this paper, an analytical model of a single diesel droplet impinging on the wall with different inclined angles (α) is developed in terms of βm (dimensionless maximum spreading length, the ratio of maximum spreading length to initial droplet diameter) to understand the detailed impinging dynamic process.
Journal Article

Uncertainty Assessment in Restraint System Optimization for Occupants of Tactical Vehicles

2016-04-05
2016-01-0316
We have recently obtained experimental data and used them to develop computational models to quantify occupant impact responses and injury risks for military vehicles during frontal crashes. The number of experimental tests and model runs are however, relatively small due to their high cost. While this is true across the auto industry, it is particularly critical for the Army and other government agencies operating under tight budget constraints. In this study we investigate through statistical simulations how the injury risk varies if a large number of experimental tests were conducted. We show that the injury risk distribution is skewed to the right implying that, although most physical tests result in a small injury risk, there are occasional physical tests for which the injury risk is extremely large. We compute the probabilities of such events and use them to identify optimum design conditions to minimize such probabilities.
Journal Article

Reliability and Cost Trade-Off Analysis of a Microgrid

2018-04-03
2018-01-0619
Optimizing the trade-off between reliability and cost of operating a microgrid, including vehicles as both loads and sources, can be a challenge. Optimal energy management is crucial to develop strategies to improve the efficiency and reliability of microgrids, as well as new communication networks to support optimal and reliable operation. Prior approaches modeled the grid using MATLAB, but did not include the detailed physics of loads and sources, and therefore missed the transient effects that are present in real-time operation of a microgrid. This article discusses the implementation of a physics-based detailed microgrid model including a diesel generator, wind turbine, photovoltaic array, and utility. All elements are modeled as sources in Simulink. Various loads are also implemented including an asynchronous motor. We show how a central control algorithm optimizes the microgrid by trying to maximize reliability while reducing operational cost.
Journal Article

Fire Suppression Modeling & Simulation Framework for Ground Vehicles

2017-03-28
2017-01-1351
The US Army Tank Automotive Research, Development and Engineering Center (TARDEC) has developed a unique physics based modeling & simulation (M&S) capability using Computational Fluid Dynamics (CFD) techniques to optimize automatic fire extinguishing system (AFES) designs and complement vehicle testing for both occupied and unoccupied spaces of military ground vehicles. The modeling techniques developed are based on reduced global kinetics for computational efficiency and are applicable to fire suppressants that are being used in Army vehicles namely, bromotrifluoromethane (Halon 1301), heptafluoropropane (HFC-227ea, trade name FM200), sodium-bicarbonate (SBC) powder, water + potassium acetate mixture, and pentafluoroethane (HFC-125, trade name, FE-25). These CFD simulations are performed using High Performance Computers (HPC) that enable the Army to assess AFES designs in a virtual world at far less cost than physical-fire tests.
Technical Paper

Optimization of Diesel Engine and After-treatment Systems for a Series Hybrid Forklift Application

2020-04-14
2020-01-0658
This paper investigates an optimal design of a diesel engine and after-treatment systems for a series hybrid electric forklift application. A holistic modeling approach is developed in GT-Suite® to establish a model-based hardware definition for a diesel engine and an after-treatment system to accurately predict engine performance and emissions. The used engine model is validated with the experimental data. The engine design parameters including compression ratio, boost level, air-fuel ratio (AFR), injection timing, and injection pressure are optimized at a single operating point for the series hybrid electric vehicle, together with the performance of the after-treatment components. The engine and after-treatment models are then coupled with a series hybrid electric powertrain to evaluate the performance of the forklift in the standard VDI 2198 drive cycle.
Journal Article

A Simulation and Optimization Methodology for Reliability of Vehicle Fleets

2011-04-12
2011-01-0725
Understanding reliability is critical in design, maintenance and durability analysis of engineering systems. A reliability simulation methodology is presented in this paper for vehicle fleets using limited data. The method can be used to estimate the reliability of non-repairable as well as repairable systems. It can optimally allocate, based on a target system reliability, individual component reliabilities using a multi-objective optimization algorithm. The algorithm establishes a Pareto front that can be used for optimal tradeoff between reliability and the associated cost. The method uses Monte Carlo simulation to estimate the system failure rate and reliability as a function of time. The probability density functions (PDF) of the time between failures for all components of the system are estimated using either limited data or a user-supplied MTBF (mean time between failures) and its coefficient of variation.
Technical Paper

A 2-D Computational Model Describing the Heat Transfer, Reaction Kinetics and Regeneration Characteristics of a Ceramic Diesel Particulate Trap

1998-02-23
980546
A 2-D CFD model was developed to describe the heat transfer, and reaction kinetics in a honeycomb structured ceramic diesel particulate trap. This model describes the steady state as well as the transient behavior of the flow and heat transfer during the trap regeneration processes. The trap temperature profile was determined by numerically solving the 2-D unsteady energy equation including the convective, heat conduction and viscous dissipation terms. The convective terms were based on a 2-D analytical flow field solution derived from the conservation of mass and momentum equations (Opris, 1997). The reaction kinetics were described using a discretized first order Arrhenius function. The 2-D term describing the reaction kinetics and particulate matter conservation of mass was added to the energy equation as a source term in order to represent the particulate matter oxidation. The filtration model describes the particulate matter accumulation in the trap.
Technical Paper

A Comparison of Time-Averaged Piston Temperatures and Surface Heat Flux Between a Direct-Fuel Injected and Carbureted Two-Stroke Engine

1998-02-23
980763
Time-averaged temperatures at critical locations on the piston of a direct-fuel injected, two-stroke, 388 cm3, research engine were measured using an infrared telemetry device. The piston temperatures were compared to data [7] of a carbureted version of the two-stroke engine, that was operated at comparable conditions. All temperatures were obtained at wide open throttle, and varying engine speeds (2000-4500 rpm, at 500 rpm intervals). The temperatures were measured in a configuration that allowed for axial heat flux to be determined through the piston. The heat flux was compared to carbureted data [8] obtained using measured piston temperatures as boundary conditions for a computer model, and solving for the heat flux. The direct-fuel-injected piston temperatures and heat fluxes were significantly higher than the carbureted piston. On the exhaust side of the piston, the direct-fuel injected piston temperatures ranged from 33-73 °C higher than the conventional carbureted piston.
Technical Paper

An Efficient IC Engine Conjugate Heat Transfer Calculation for Cooling System Design

2007-04-16
2007-01-0147
This study focuses on how to predict hot spots of one of the cylinders of a V8 5.4 L FORD engine running at full load. The KIVA code with conjugate heat transfer capability to simulate the fast transient heat transfer process between the gas and the solid phases has been developed at the Michigan Technological University and will be used in this study. Liquid coolant flow was simulated using FLUENT and will be used as a boundary condition to account for the heat loss to the cooling fluid. In the first step of calculation, the coupling between the gas and the solid phases will be solved using the KIVA code. A 3D transient wall heat flux at the gas-solid interface is then compiled and used along with the heat loss information from the FLUENT data to obtain the temperature distribution for the engine metal components, such as cylinder wall, cylinder head, etc.
Technical Paper

Computational Optimization of a Split Injection System with EGR and Boost Pressure/Compression Ratio Variations in a Diesel Engine

2007-04-16
2007-01-0168
A previously developed CFD-based optimization tool is utilized to find optimal engine operating conditions with respect to fuel consumption and emissions. The optimization algorithm employed is based on the steepest descent method where an adaptive cost function is minimized along each line search using an effective backtracking strategy. The adaptive cost function is based on the penalty method, where the penalty coefficient is increased after every line search. The parameter space is normalized and, thus, the optimization occurs over the unit cube in higher-dimensional space. The application of this optimization tool is demonstrated for the Sulzer S20, a central-injection, non-road DI diesel engine. The optimization parameters are the start of injection of the two pulses of a split injection system, the duration of each pulse, the exhaust gas recirculation rate, the boost pressure and the compression ratio.
Technical Paper

Global Optimization of a Two-Pulse Fuel Injection Strategy for a Diesel Engine Using Interpolation and a Gradient-Based Method

2007-04-16
2007-01-0248
A global optimization method has been developed for an engine simulation code and utilized in the search of optimal fuel injection strategies. This method uses a Lagrange interpolation function which interpolates engine output data generated at the vertices and the intermediate points of the input parameters. This interpolation function is then used to find a global minimum over the entire parameter set, which in turn becomes the starting point of a CFD-based optimization. The CFD optimization is based on a steepest descent method with an adaptive cost function, where the line searches are performed with a fast-converging backtracking algorithm. The adaptive cost function is based on the penalty method, where the penalty coefficient is increased after every line search. The parameter space is normalized and, thus, the optimization occurs over the unit cube in higher-dimensional space.
Technical Paper

Reliability-Based Robust Design Optimization Using the EDR Method

2007-04-16
2007-01-0550
This paper attempts to integrate a derivative-free probability analysis method to Reliability-Based Robust Design Optimization (RBRDO). The Eigenvector Dimension Reduction (EDR) method is used for the probability analysis method. It has been demonstrated that the EDR method is more accurate and efficient than the Second-Order Reliability Method (SORM) for reliability and quality assessment. Moreover, it can simultaneously evaluate both reliability and quality without any extra expense. Two practical engineering problems (vehicle side impact and layered bonding plates) are used to demonstrate the effectiveness of the EDR method.
Technical Paper

Bayesian Reliability-Based Design Optimization Using Eigenvector Dimension Reduction (EDR) Method

2007-04-16
2007-01-0559
In the last decade, considerable advances have been made in reliability-based design optimization (RBDO). One assumption in RBDO is that the complete information of input uncertainties are known. However, this assumption is not valid in practical engineering applications, due to the lack of sufficient data. In practical engineering design, information concerning uncertainty parameters is usually in the form of finite samples. Existing methods in uncertainty based design optimization cannot handle design problems involving epistemic uncertainty with a shortage of information. Recently, a novel method referred to as Bayesian Reliability-Based Design Optimization (BRBDO) was proposed to properly handle design problems when engaging both epistemic and aleatory uncertainties [1]. However, when a design problem involves a large number of epistemic variables, the computation task for BRBDO becomes extremely expensive.
Technical Paper

The Calculation of Mass Fraction Burn of Ethanol-Gasoline Blended Fuels Using Single and Two-Zone Models

2008-04-14
2008-01-0320
One-dimensional single-zone and two-zone analyses have been exercised to calculate the mass fraction burned in an engine operating on ethanol/gasoline-blended fuels using the cylinder pressure and volume data. The analyses include heat transfer and crevice volume effects on the calculated mass fraction burned. A comparison between the two methods is performed starting from the derivation of conservation of energy and the method to solve the mass fraction burned rates through the results including detailed explanation of the observed differences and trends. The apparent heat release method is used as a point of reference in the comparison process. Both models are solved using the LU matrix factorization and first-order Euler integration.
Technical Paper

Optimization of an Asynchronous Fuel Injection System in Diesel Engines by Means of a Micro-Genetic Algorithm and an Adaptive Gradient Method

2008-04-14
2008-01-0925
Optimal fuel injection strategies are obtained with a micro-genetic algorithm and an adaptive gradient method for a nonroad, medium-speed DI diesel engine equipped with a multi-orifice, asynchronous fuel injection system. The gradient optimization utilizes a fast-converging backtracking algorithm and an adaptive cost function which is based on the penalty method, where the penalty coefficient is increased after every line search. The micro-genetic algorithm uses parameter combinations of the best two individuals in each generation until a local convergence is achieved, and then generates a random population to continue the global search. The optimizations have been performed for a two pulse fuel injection strategy where the optimization parameters are the injection timings and the nozzle orifice diameters.
Technical Paper

Modeling, Design and Validation of an Exhaust Muffler for a Commercial Telehandler

2009-05-19
2009-01-2047
This paper describes the design, development and validation of a muffler for reducing exhaust noise from a commercial tele-handler. It also describes the procedure for modeling and optimizing the exhaust muffler along with experimental measurement for correlating the sound transmission loss (STL). The design and tuning of the tele-handler muffler was based on several factors including overall performance, cost, weight, available space, and ease of manufacturing. The analysis for predicting the STL was conducted using the commercial software LMS Virtual Lab (LMS-VL), while the experimental validation was carried out in the laboratory using the two load setup. First, in order to gain confidence in the applicability of LMS-VL, the STL of some simple expansion mufflers with and without extended inlet/outlet and perforations was considered. The STL of these mufflers were predicted using the traditional plane wave transfer matrix approach.
Technical Paper

Determination of Heat Transfer Augmentation Due to Fuel Spray Impingement in a High-Speed Diesel Engine

2009-04-20
2009-01-0843
As the incentive to produce cleaner and more efficient engines increases, diesel engines will become a primary, worldwide solution. Producing diesel engines with higher efficiency and lower emissions requires a fundamental understanding of the interaction of the injected fuel with air as well as with the surfaces inside the combustion chamber. One aspect of this interaction is spray impingement on the piston surface. Impingement on the piston can lead to decreased combustion efficiency, higher emissions, and piston damage due to thermal loading. Modern high-speed diesel engines utilize high pressure common-rail direct-injection systems to primarily improve efficiency and reduce emissions. However, the high injection pressures of these systems increase the likelihood that the injected fuel will impinge on the surface of the piston.
X