Refine Your Search

Topic

Author

Affiliation

Search Results

Video

Evaluation of a NOx Transient Response Method for OBD of SCR Catalysts

2012-01-30
OBD requirements for aftertreatment system components require monitoring of the individual system components. One such component can be an NH3-SCR catalyst for NOx reduction. An OBD method that has been suggested is to generate positive or negative spikes in the inlet NH3 concentration, and monitor the outlet NOx transient response. A slow response indicates that the catalyst is maintaining its NH3 storage capacity, and therefore it is probably not degraded. A fast response indicates the catalyst has lost NH3 storage capacity, and may be degraded. The purpose of the work performed at Southwest Research Institute was to assess this approach for feasibility, effectiveness and practicality. The presentation will describe the work performed, results obtained, and implications for applying this method in test laboratory and real-world situations. Presenter Gordon J. Bartley, Southwest Research Institute
Video

Brief Investigation of SCR High Temperature N2O Production

2012-06-18
Nitrous Oxide (N2O) is a greenhouse gas with a Global Warming Potential (GWP) of 298-310 [1,2] (298-310 times more potent than carbon dioxide (CO2)). As a result, any aftertreatment system that generates N2O must be well understood to be used effectively. Under low temperature conditions, N2O can be produced by Selective Catalytic Reduction (SCR) catalysts. The chemistry is reasonably well understood with N2O formed by the thermal decomposition of ammonium nitrate [3]. Ammonium nitrate and N2O form in oxides of nitrogen (NOx) gas mixtures that are high in nitrogen dioxide (NO2)[4]. This mechanism occurs at a relatively low temperature of about 200°C, and can be controlled by maintaining the nitric oxide (NO)/NO2 ratio above 1. However, N2O has also been observed at relatively high temperatures, in the region of 500°C.
Video

SCR Deactivation Study for OBD Applications

2012-06-18
Selective catalytic reduction (SCR) catalysts will be used to reduce oxides of nitrogen (NOx) emissions from internal combustion engines in a number of applications [1,2,3,4]. Southwest Research Institute® (SwRI)® performed an Internal Research & Development project to study SCR catalyst thermal deactivation. The study included a V/W/TiO2 formulation, a Cu-zeolite formulation and an Fe-zeolite formulation. This work describes NOx timed response to ammonia (NH3) transients as a function of thermal aging time and temperature. It has been proposed that the response time of NOx emissions to NH3 transients, effected by changes in diesel emissions fluid (DEF) injection rate, could be used as an on-board diagnostic (OBD) metric. The objective of this study was to evaluate the feasibility and practicality of this OBD approach.
Journal Article

Assessment of Multiple Injection Strategies in a Direct-Injection Hydrogen Research Engine

2009-06-15
2009-01-1920
Hydrogen is widely considered a promising fuel for future transportation applications for both, internal combustion engines and fuel cells. Due to their advanced stage of development and immediate availability hydrogen combustion engines could act as a bridging technology towards a wide-spread hydrogen infrastructure. Although fuel cell vehicles are expected to surpass hydrogen combustion engine vehicles in terms of efficiency, the difference in efficiency might not be as significant as widely anticipated [1]. Hydrogen combustion engines have been shown capable of achieving efficiencies of up to 45 % [2]. One of the remaining challenges is the reduction of nitric oxide emissions while achieving peak engine efficiencies. This paper summarizes research work performed on a single-cylinder hydrogen direct injection engine at Argonne National Laboratory.
Journal Article

The Effect of Fuel Composition on Performance and Emissions of a Variety of Natural Gas Engines

2010-05-05
2010-01-1476
Work was performed to determine the feasibility of operating heavy-duty natural gas engines over a wide range of fuel compositions by evaluating engine performance and emission levels. Heavy-duty compressed natural gas engines from various engine manufacturers, spanning a range of model years and technologies, were evaluated using a diversity of fuel blends. Performance and regulated emission levels from these engines were evaluated using natural gas fuel blends with varying methane number (MN) and Wobbe Index in a dynamometer test cell. Eight natural gas blends were tested with each engine, and ranged from MN 75 to MN 100. Test engines included a 2007 model year Cummins ISL G, a 2006 model year Cummins C Gas Plus, a 2005 model year John Deere 6081H, a 1998 model year Cummins C Gas, and a 1999 model year Detroit Diesel Series 50G TK. All engines used lean-burn technology, except for the ISL G, which was a stoichiometric engine.
Journal Article

Effects of EGR Dilution and Fuels on Spark Plug Temperatures in Gasoline Engines

2013-04-08
2013-01-1632
The addition of exhaust gas recirculation (EGR) has demonstrated the potential to significantly improve engine efficiency by allowing high CR operation due to a reduction in knock tendency, heat transfer, and pumping losses. In addition, EGR also reduces the engine-out emission of nitrogen oxides, particulates, and carbon monoxide while further improving efficiency at stoichiometric air/fuel ratios. However, improvements in efficiency through enhanced combustion phasing at high compression ratios can result in a significant increase in cylinder pressure. As cylinder pressure and temperature are both important parameters for estimating the durability requirements of the engine - in effect specifying the material and engineering required for the head and block - the impact of EGR on surface temperatures, when combined with the cylinder pressure data, will provide an important understanding of the design requirements for future cylinder heads.
Journal Article

Diesel Cold-Start Emission Control Research for 2015-2025 LEV III Emissions - Part 2

2014-04-01
2014-01-1552
The diesel engine can be an effective solution to meet future greenhouse gas and fuel economy standards, especially for larger segment vehicles. However, a key challenge facing the diesel is the upcoming LEV III and Tier 3 emission standards which will require significant reductions in hydrocarbon (HC) and oxides of nitrogen (NOx) emissions. The challenge stems from the fact that diesel exhaust temperatures are much lower than gasoline engines, so the time required to achieve effective emissions control after a cold-start with typical aftertreatment devices is considerably longer. To address this challenge, a novel diesel cold-start emission control strategy was investigated on a 2L class diesel engine. This strategy combines several technologies to reduce tailpipe HC and NOx emissions before the start of the second hill of the FTP75. The technologies include both engine tuning and aftertreatment changes.
Journal Article

A Demonstration of Dedicated EGR on a 2.0 L GDI Engine

2014-04-01
2014-01-1190
Southwest Research Institute (SwRI) converted a 2012 Buick Regal GS to use an engine with Dedicated EGR™ (D-EGR™). D-EGR is an engine concept that uses fuel reforming and high levels of recirculated exhaust gas (EGR) to achieve very high levels of thermal efficiency [1]. To accomplish reformation of the gasoline in a cost-effective, energy efficient manner, a dedicated cylinder is used for both the production of EGR and reformate. By operating the engine in this manner, many of the sources of losses from traditional reforming technology are eliminated and the engine can take full advantage of the benefits of reformate. The engine in the vehicle was modified to add the following components: the dedicated EGR loop, an additional injector for delivering extra fuel for reformation, a modified boost system that included a supercharger, high energy dual coil offset (DCO) ignition and other actuators used to enable the control of D-EGR combustion.
Journal Article

LPL EGR and D-EGR® Engine Concept Comparison Part 2: High Load Operation

2015-04-14
2015-01-0781
The ongoing pursuit of improved engine efficiency and emissions is driving gasoline low-pressure loop EGR systems into production around the globe. The Dedicated EGR (D-EGR®) engine was developed to minimize some of the challenges of cooled EGR while maintaining its advantages. The D-EGR engine is a high efficiency, low emissions internal combustion engine for automotive and off-highway applications. The core of the engine development focused on a unique concept that combines the efficiency improvements associated with recirculated exhaust gas and the efficiency improvements associated with fuel reformation. To outline the differences of the new engine concept with a conventional LPL EGR setup, a turbocharged 2.0 L PFI engine was modified to operate in both modes. The second part of the cooled EGR engine concept comparison investigates efficiency, knock resistance, combustion stability, and maximum load potential at high load conditions.
Journal Article

Potential and Challenges for a Water-Gas-Shift Catalyst as a Combustion Promoter on a D-EGR® Engine

2015-04-14
2015-01-0784
In light of the increasingly stringent efficiency and emissions requirements, several new engine technologies are currently under investigation. One of these new concepts is the Dedicated EGR (D-EGR®) engine. The concept utilizes fuel reforming and high levels of recirculated exhaust gas (EGR) to achieve very high levels of thermal efficiency. While the positive impact of reformate, in particular hydrogen, on gasoline engine performance has been widely documented, the on-board reforming process and / or storage of H2 remains challenging. The Water-Gas-Shift (WGS) reaction is well known and has been used successfully for many years in the industry to produce hydrogen from the reactants water vapor and carbon monoxide. For this study, prototype WGS catalysts were installed in the exhaust tract of the dedicated cylinder of a turbocharged 2.0 L in-line four cylinder MPI engine. The potential of increased H2 production in a D-EGR engine was evaluated through the use of these catalysts.
Technical Paper

Combination of Mixed Metal Oxides with Cu-Zeolite for Enhanced Soot Oxidation on an SCRoF

2021-09-05
2021-24-0071
A push for more stringent emissions regulations has resulted in larger, increasingly complex aftertreatment solutions. In particular, oxides of nitrogen (NOX) and particulate matter (PM) have been controlled using two separate systems, selective catalytic reduction (SCR) and the catalyze diesel particulate filter (CDPF), or the functionality has been combined into a single device producing the SCR on filter (SCRoF). The SCRoF forgoes beneficial NO2 production present in the CDPF to avoid NH3 oxidation which occurs when using platinum group metals (PGM) for oxidation. In this study, mixed-metal oxides are shown to oxidize NO to NO2 without appreciable NH3 oxidation. This selectivity leads to enhanced performance when combined with a typical Cu-zeolite catalyst.
Journal Article

Experimental and Numerical Study of Flame Kernel Formation Processes of Propane-Air Mixture in a Pressurized Combustion Vessel

2016-04-05
2016-01-0696
Fuel lean combustion and exhaust gas dilution are known to increase the thermal efficiency and reduce NOx emissions. In this study, experiments are performed to understand the effect of equivalence ratio on flame kernel formation and flame propagation around the spark plug for different low turbulent velocities. A series of experiments are carried out for propane-air mixtures to simulate engine-like conditions. For these experiments, equivalence ratios of 0.7 and 0.9 are tested with 20 percent mass-based exhaust gas recirculation (EGR). Turbulence is generated by a shrouded fan design in the vicinity of J-spark plug. A closed loop feedback control system is used for the fan to generate a consistent flow field. The flow profile is characterized by using Particle Image Velocimetry (PIV) technique. High-speed Schlieren visualization is used for the spark formation and flame propagation.
Journal Article

Achieving Ultra Low NOX Emissions Levels with a 2017 Heavy-Duty On-Highway TC Diesel Engine and an Advanced Technology Emissions System - Thermal Management Strategies

2017-03-28
2017-01-0954
The most recent 2010 emissions standards for heavy-duty engines have established a tailpipe limit of oxides of nitrogen (NOX) emissions of 0.20 g/bhp-hr. However, it is projected that even when the entire on-road fleet of heavy-duty vehicles operating in California is compliant with 2010 emission standards, the National Ambient Air Quality Standards (NAAQS) requirement for ambient particulate matter and Ozone will not be achieved without further reduction in NOX emissions. The California Air Resources Board (CARB) funded a research program to explore the feasibility of achieving 0.02 g/bhp-hr NOX emissions.
Technical Paper

Investigation of Diesel-CNG RCCI Combustion at Multiple Engine Operating Conditions

2020-04-14
2020-01-0801
Past experimental studies conducted by the current authors on a 13 liter 16.7:1 compression ratio heavy-duty diesel engine have shown that diesel-Compressed Natural Gas (CNG) Reactivity Controlled Compression Ignition (RCCI) combustion targeting low NOx emissions becomes progressively difficult to control as the engine load is increased. This is mainly due to difficulty in controlling reactivity levels at higher loads. For the current study, CFD investigations were conducted in CONVERGE using the SAGE combustion solver with the application of the Rahimi mechanism. Studies were conducted at a load of 5 bar BMEP to validate the simulation results against RCCI experimental data. In the low load study, it was found that the Rahimi mechanism was not able to predict the RCCI combustion behavior for diesel injection timings advanced beyond 30 degCA bTDC. This poor prediction was found at multiple engine speed and load points.
Technical Paper

Improving Heavy Duty Natural Gas Engine Efficiency: A Systematic Approach to Application of Dedicated EGR

2020-04-14
2020-01-0818
The worldwide trend of tightening CO2 emissions standards and desire for near zero emissions is driving development of high efficiency natural gas engines for a low CO2 replacement of traditional diesel engines. A Cummins Westport ISX12 G was previously converted to a Dedicated EGR® (D-EGR®) configuration with two out of the six cylinders acting as the EGR producing cylinders. Using a systems approach, the combustion and turbocharging systems were optimized for improved efficiency while maintaining the potential for achieving 0.02 g/bhp-hr NOX standards. A prototype variable nozzle turbocharger was selected to maintain the stock torque curve. The EGR delivery method enabled a reduction in pre-turbine pressure as the turbine was not required to be undersized to drive EGR. A high energy Dual Coil Offset (DCO®) ignition system was utilized to maintain stable combustion with increased EGR rates.
Journal Article

Investigation of In-cylinder NOx and PM Reduction with Delphi E3 Flexible Unit Injectors on a Heavy-duty Diesel Engine

2008-06-23
2008-01-1792
In-cylinder emission controls were the focus for diesel engines for many decades before the emergence of diesel aftertreatment. Even with modern aftertreatment, control of in-cylinder processes remains a key issue for developing diesel vehicles with low tailpipe emissions. A reduction in in-cylinder emissions makes aftertreatment more effective at lower cost with superior fuel economy. This paper describes a study focused on an in-cylinder combustion control approach using a Delphi E3 flexible fuel system to achieve low engine-out NOx and PM emissions. A 2003 model year Detroit Diesel Corporation Series 60 14L heady-duty diesel engine, modified to accept the Delphi E3 unit injectors, and ultra low sulfur fuel were used throughout this study. The process of achieving premixed low temperature combustion within the limited range of parameters of the stock ECU was investigated.
Journal Article

Engine Operating Condition and Gasoline Fuel Composition Effects on Low-Speed Pre-Ignition in High-Performance Spark Ignited Gasoline Engines

2011-04-12
2011-01-0342
Downsizing is an important concept to reduce fuel consumption as well as emissions of spark ignition engines. Engine displacement is reduced in order to shift operating points from lower part load into regions of the operating map with higher efficiency and thus lower specific fuel consumption [ 1 ]. Since maximum power in full load operation decreases due to the reduction of displacement, engines are boosted (turbocharging or supercharging), which leads to a higher specific loading of the engines. Hence, a new combustion phenomenon has been observed at high loads and low engine speed and is referred to as Low-Speed Pre-Ignition or LSPI. In cycles with LSPI, the air/fuel mixture is ignited prior to the spark which results in the initial flame propagation quickly transforming into heavy engine knock. Very high pressure rise rates and peak cylinder pressures could exceed design pressure limits, which in turn could lead to degradation of the engine.
Journal Article

Brief Investigation of SCR High Temperature N2O Production

2012-04-16
2012-01-1082
Nitrous Oxide (N₂O) is a greenhouse gas with a Global Warming Potential (GWP) of 298-310 (298-310 times more potent than carbon dioxide (CO₂)). As a result, any aftertreatment system that generates N₂O must be well understood to be used effectively. Under low temperature conditions, N₂O can be produced by Selective Catalytic Reduction (SCR) catalysts. The chemistry is reasonably well understood with N₂O formed by the thermal decomposition of ammonium nitrate. Ammonium nitrate and N₂O form in oxides of nitrogen (NOx) gas mixtures that are high in nitrogen dioxide (NO₂). This mechanism occurs at a relatively low temperature of about 200°C, and can be controlled by maintaining the nitric oxide (NO)/NO₂ ratio above 1. However, N₂O has also been observed at relatively high temperatures, in the region of 500°C.
Journal Article

The Interaction of Fuel Anti-Knock Index and Cooled EGR on Engine Performance and Efficiency

2012-04-16
2012-01-1149
Experiments were performed on a 2.4L boosted, MPI gasoline engine, equipped with a low-pressure loop (LPL) cooled EGR system and an advanced ignition system, using fuels with varying anti-knock indices. The fuels were blends of 87, 93 and 105 Anti-Knock Index (AKI) gasoline. Ignition timing and EGR sweeps were performed at various loads to determine the tradeoff between EGR level and fuel octane rating. The resulting engine data was analyzed to establish the relationship between the octane requirement and the level of cooled EGR used in a given application. In addition, the combustion difference between fuels was examined to determine the effect that fuel reactivity, in the form of anti-knock index (AKI), has on EGR tolerance and burn rate. The results indicate that the improvement in effective AKI of the fuel from using EGR is constant across commercial grade gasolines at about 0.5 ON per % EGR.
Journal Article

A High Efficiency, Dilute Gasoline Engine for the Heavy-Duty Market

2012-09-24
2012-01-1979
A 13 L HD diesel engine was converted to run as a flame propagation engine using the HEDGE™ Dual-Fuel concept. This concept consists of pre-mixed gasoline ignited by a small amount of diesel fuel - i.e., a diesel micropilot. Due to the large bore size and relatively high compression ratio for a pre-mixed combustion engine, high levels of cooled EGR were used to suppress knock and reduce the engine-out emissions of the oxides of nitrogen and particulates. Previous work had indicated that the boosting of high dilution engines challenges most modern turbocharging systems, so phase I of the project consisted of extensive simulation efforts to identify an EGR configuration that would allow for high levels of EGR flow along the lug curve while minimizing pumping losses and combustion instabilities from excessive backpressure. A potential solution that provided adequate BTE potential was consisted of dual loop EGR systems to simultaneously flow high pressure and low pressure loop EGR.
X