Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Modeling of Phase Change within a Wax Element Thermostat Embedded in an Automotive Cooling System

2017-03-28
2017-01-0131
In an automotive cooling circuit, the wax melting process determines the net and time history of the energy transfer between the engine and its environment. A numerical process that gives insight into the mixing process outside the wax chamber, the wax melting process inside the wax chamber, and the effect on the poppet valve displacement will be advantageous to both the engine and automotive system design. A fully three dimensional, transient, system level simulation of an inlet controlled thermostat inside an automotive cooling circuit is undertaken in this paper. A proprietary CFD algorithm, Simerics-Sys®/PumpLinx®, is used to solve this complex problem. A two-phase model is developed in PumpLinx® to simulate the wax melting process. The hysteresis effect of the wax melting process is also considered in the simulation.
Journal Article

Multibody Dynamics Cosimulation for Vehicle NVH Response Predictions

2017-03-28
2017-01-1054
At various milestones during a vehicle’s development program, different CAE models are created to assess NVH error states of concern. Moreover, these CAE models may be developed in different commercial CAE software packages, each one with its own unique advantages and strengths. Fortunately, due to the wide spread acceptance that the Functional Mock-up Interface (FMI) standard gained in the CAE community over the past few years, many commercial CAE software now support cosimulation in one form or the other. Cosimulation allows performing multi-domain/multi-resolution simulations of the vehicle, thereby combining the advantages of various modeling techniques and software. In this paper, we explore cosimulation of full 3D vehicle model developed in MSC ADAMS with 1D driveline model developed in LMS AMESim. The target application of this work is investigation of vehicle NVH error states associated with both hybridized and non-hybridized powertrains.
Journal Article

Stress-Corrosion Cracking Evaluation of Hot-Stamped AA7075-T6 B-Pillars

2017-03-28
2017-01-1271
High-strength aluminum alloys such as 7075 can be formed using advanced manufacturing methods such as hot stamping. Hot stamping utilizes an elevated temperature blank and the high pressure stamping contact of the forming die to simultaneously quench and form the sheet. However, changes in the thermal history induced by hot stamping may increase this alloy’s stress corrosion cracking (SCC) susceptibility, a common corrosion concern of 7000 series alloys. This work applied the breaking load method for SCC evaluation of hot stamped AA7075-T6 B-pillar panels that had been artificially aged by two different artificial aging practices (one-step and two-step). The breaking load strength of the specimens provided quantitative data that was used to compare the effects of tensile load, duration, alloy, and heat treatment on SCC behavior.
Technical Paper

Responses of the THOR in Oblique Sled Impacts: Focus on Chest Deflection

2020-04-14
2020-01-0522
The National Highway Traffic Safety Administration (NHTSA) published a Request for Comments (RFC) on proposed changes to the New Car Assessment Program (NCAP) in 2015 and 2017. One potential change was the introduction of a frontal Oblique Impact (OI) crash test. The Test device for Human Occupant Restraint (THOR) in the front left seat was used in the proposed OI test. The motivations behind the current study were a) determine if OI sled tests can be simplified, b) study the sensitivity of the THOR chest deflection to the shoulder belt layout in OI and c) assess the NHTSA-proposed THOR thoracic injury risk curves. In the current study, eleven oblique sled impact tests were conducted. The environment was representative of a generic mid-sized sedan. The buck was mounted on a rigid plate that allowed the pre-test rotation of the buck relative to the sled axis. A generic mid-sized OI pulse was used. The pulse was applied in the longitudinal direction of the sled.
Technical Paper

Calibration and Validation of GISSMO Damage Model for A 780-MPa Third Generation Advanced High Strength Steel

2020-04-14
2020-01-0198
To evaluate vehicle crash performance in the early design stages, a reliable fracture model is needed in crash simulations to predict material fracture initiation and propagation. In this paper, a generalized incremental stress state dependent damage model (GISSMO) in LS-DYNA® was calibrated and validated for a 780-MPa third generation advanced high strength steels (AHSS), namely 780 XG3TM steel that combines high strength and ductility. The fracture locus of the 780 XG3TM steel was experimentally characterized under various stress states including uniaxial tension, shear, plane strain and equi-biaxial stretch conditions. A process to calibrate the parameters in the GISSMO model was developed and successfully applied to the 780 XG3TM steel using the fracture test data for these stress states.
Journal Article

Developing Safety Standards for FCVs and Hydrogen Vehicles

2009-04-20
2009-01-0011
The SAE Fuel Cell Vehicle (FCV) Safety Working Group has been addressing FCV safety for over 9 years. The initial document, SAE J2578, was published in 2002. SAE J2578 has been valuable as a Recommended Practice for FCV development with regard to the identification of hazards and the definition of countermeasures to mitigate these hazards such that FCVs can be operated in the same manner as conventional gasoline internal combustion engine (ICE)-powered vehicles. SAE J2578 is currently being revised so that it will continue to be relevant as FCV development moves forward. For example, test methods were refined to verify the acceptability of hydrogen discharges when parking in residential garages and commercial structures and after crash tests prescribed by government regulation, and electrical requirements were updated to reflect the complexities of modern electrical circuits which interconnect both AC and DC circuits to improve efficiency and reduce cost.
Journal Article

Design Considerations for Hydrogen Management System on Ford Hydrogen Fueled E-450 Shuttle Bus

2009-04-20
2009-01-1422
As part of a continuous research and innovation effort, Ford Motor Company has been evaluating hydrogen as an alternative fuel option for vehicles with internal combustion engines since 1997. Ford has recently designed and built an Econoline (E-450) shuttle bus with a 6.8L Triton engine that uses gaseous hydrogen fuel. Safe practices in the production, storage, distribution, and use of hydrogen are essential for the widespread public and commercial acceptance of hydrogen vehicles. Hazards and risks inherent in the application of hydrogen fuel to internal combustion engine vehicles are explained. The development of a Hydrogen Management System (H2MS) to detect hydrogen leaks in the vehicle is discussed, including the evolution of the H2MS design from exploration and quantification of risks, to implementation and validation of a working system on a vehicle. System elements for detection, mitigation, and warning are examined.
Journal Article

Pressure Based Sensing Approach for Front Impacts

2011-04-12
2011-01-1443
This study demonstrates the use of pressure sensing technology to predict the crash severity of frontal impacts. It presents an investigation of the pressure change in the front structural elements (bumper, crush cans, rails) during crash events. A series of subsystem tests were conducted in the laboratory that represent a typical frontal crash development series and provided empirical data to support the analysis of the concept. The pressure signal energy at different sensor mounting locations was studied and design concepts were developed for amplifying the pressure signal. In addition, a pressure signal processing methodology was developed that relies on the analysis of the air flow behavior by normalizing and integrating the pressure changes. The processed signal from the pressure sensor is combined with the restraint control module (RCM) signals to define the crash severity, discriminate between the frontal crash modes and deploy the required restraint devices.
Journal Article

A Component Test Methodology for Simulation of Full-Vehicle Side Impact Dummy Abdomen Responses for Door Trim Evaluation

2011-04-12
2011-01-1097
Described in this paper is a component test methodology to evaluate the door trim armrest performance in an Insurance Institute for Highway Safety (IIHS) side impact test and to predict the SID-IIs abdomen injury metrics (rib deflection, deflection rate and V*C). The test methodology consisted of a sub-assembly of two SID-IIs abdomen ribs with spine box, mounted on a linear bearing and allowed to translate in the direction of impact. The spine box with the assembly of two abdominal ribs was rigidly attached to the sliding test fixture, and is stationary at the start of the test. The door trim armrest was mounted on the impactor, which was prescribed the door velocity profile obtained from full-vehicle test. The location and orientation of the armrest relative to the dummy abdomen ribs was maintained the same as in the full-vehicle test.
Technical Paper

Side Impact Modeling using Quasi-Static Crush Data

1991-02-01
910601
This paper describes the development of a three-dimensional lumped-mass structure and dummy model to study barrier-to-car side impacts. The test procedures utilized to develop model input data are also described. The model results are compared to crash test results from a series of six barrier-to-car crash tests. Sensitivity analysis using the validated model show the necessity to account for dynamic structural rate effects when using quasi-statically measured vehicle crush data.
Technical Paper

Recent Advances in Swelling Resistance of Graphene-Based Rubber Compounds

2020-04-14
2020-01-0769
Recently, graphene has attracted both academic and industrial interest because it can produce a dramatic improvement in properties at very low filler content. This review will focus on the latest studies and recent progress in the swelling resistance of rubber compounds due to the addition of graphene and its derivatives. This work will present the state-of-the-art in this subject area and will highlight the advantages and current limitations of the use of graphene for potential future researches.
Technical Paper

Biofidelity of Anthropomorphic Test Devices for Rear Impact

1997-11-12
973342
This study examines the biofidelity, repeatability, and reproducibility of various anthropomorphic devices in rear impacts. The Hybrid III, the Hybrid III with the RID neck, and the TAD-50 were tested in a rigid bench condition in rear impacts with ΔVs of 16 and 24 kph. The results of the tests were then compared to the data of Mertz and Patrick[1]. At a AV of 16 kph, all three anthropomorphic devices showed general agreement with Mertz and Patrick's data [1]. At a AV of 24 kph, the RID neck tended to exhibit larger discrepancies than the other two anthropomorphic devices. Also, two different RID necks produced significantly different moments at the occipital condyles under similar test conditions. The Hybrid III and the Hybrid III with the RID neck were also tested on standard production seats in rear impacts for a AV of 8 kph. Both the kinematics and the occupant responses of the Hybrid III and the Hybrid III with the RID neck differed from each other.
Technical Paper

Using Engine as Torsional Shaker for Vehicle Sensitivity Refinement at Idle Conditions

2007-05-15
2007-01-2319
Vehicle idle quality has become an increasing quality concern for automobile manufacturers because of its impact on customer satisfaction. There are two factors that critical to vehicle idle quality, the engine excitation force and vehicle sensitivity (transfer function). To better understand the contribution to the idle quality from these two factors and carry out well-planned improvement measures, a quick and easy way to measure vehicle sensitivity at idle conditions is desired. There are several different ways to get vehicle sensitivity at idle conditions. A typical way is to use CAE. One of the biggest advantages using CAE is that it can separate vehicle sensitivities to different forcing inputs. As always, the CAE results need to be validated before being fully utilized. Another way to get vehicle sensitivity is through impact test using impact hammer or shaker. However this method doesn't include the mount preload due to engine firing torque [3, 4, & 5].
Technical Paper

The Reinvention of the Wheel: Progress in Car Radios and Their Future

1990-02-01
900039
Advances in digital and analog electronics have drastically changed car radio circuitry. Improvements in miniaturization of electrical and mechanical components have radically altered their size and styling. Computer modeling of the vehicle's interior environment has optimized car radio acoustics. It seems that the list of modern break-throughs is never ending. It is the intent of this paper to show that many of the technical marvels of today's car radios were first applied years, even decades, ago. From those early concepts, and their current revivals, a projection into the future of automobile radios will be made. As previously mentioned [1]: “If history teaches anything, it teaches the potential for repetition.”
Technical Paper

Analysis of Neck Tension Force in IIHS Rear Impact Test

2007-04-16
2007-01-0368
This paper examines the neck tension force (Fz) of the BioRid II dummy in the IIHS (Insurance Institute of Highway Safety) rear impact mode. The kinematics of the event is carefully reviewed, followed by a detailed theoretical analysis, paying particular attention to the upper neck tension force. The study reveals that the neck tension should be approximately 450N due to the head inertia force alone. However, some of the tests conducted by IIHS had neck tension forces as high as 1400N. The theory of head hooking and torso downward pulling is postulated in the paper, and various publicly available IIHS rear impact tests are examined against the theory. It is found in the analysis that in many of those tests with high neck tension forces, the locus of the head restraint reaction force travels on the dummy's skull cap, and eventually moves down underneath the skull cap, which causes “hooking” of the head on the stacked-up head restraint foam.
Technical Paper

An Evaluation of Laminated Side Window Glass Performance During Rollover

2007-04-16
2007-01-0367
In this study, the occupant containment characteristics of automotive laminated safety glass in side window applications was evaluated through two full-scale, full-vehicle dolly rollover crash tests. The dolly rollover crash tests were performed on sport utility vehicles equipped with heat-strengthened laminated safety glass in the side windows in order to: (1) evaluate the capacity of laminated side window safety glass to contain unrestrained occupants during rollover, (2) analyze the kinematics associated with unrestrained occupants during glazing interaction and ejection, and (3) to identify laminated side window safety glass failure modes. Dolly rollovers were performed on a 1998 Ford Expedition and a 2004 Volvo XC90 at a nominal speed of 43 mph, with unbelted Hybrid II Anthropomorphic Test Devices (ATDs) positioned in the outboard seating positions.
Technical Paper

An Integrated Design and Appraisal System for Vehicle Interior Packaging

2007-04-16
2007-01-0459
Static seating bucks have long been used as the only means to subjectively appraise the vehicle interior packages in the vehicle development process. The appraisal results have traditionally been communicated back to the requesting engineers either orally or in a written format. Any design changes have to be made separately after the appraisal is completed. Further, static seating bucks lack the flexibility to accommodate design iterations during the evolution of a vehicle program. The challenge has always been on how to build a seating buck quickly enough to support the changing needs of vehicle programs, especially in the early vehicle development phases. There is always a disconnect between what the seating buck represents and what is in the latest design (CAD), since it takes weeks or months to build a seating buck and by the time it is built the design has already been evolved. There is also no direct feedback from seating buck appraisal to the design in CAD.
Technical Paper

Stiff versus Yielding Seats: Analysis of Matched Rear Impact Tests

2007-04-16
2007-01-0708
The objective of this study was to analyze available anthropomorphic test device (ATD) responses from KARCO rear impact tests and to evaluate an injury predictive model based on crash severity and occupant weight presented by Saczalski et al. (2004). The KARCO tests were carried out with various seat designs. Biomechanical responses were evaluated in speed ranges of 7-12, 13-17, 18-23 and 24-34 mph. For this analysis, all tests with matching yielding and stiff seats and matching occupant size and weight were analyzed for cases without 2nd row occupant interaction. Overall, the test data shows that conventional yielding seats provide a high degree of safety for small to large adult occupants in rear crashes; this data is also consistent with good field performance as found in NASS-CDS. Saczalski et al.'s (2004) predictive model of occupant injury is not correct as there are numerous cases from NASS-CDS that show no or minor injury in the region where serious injury is predicted.
Technical Paper

Testing and Finite Element Modeling of Hydroform Frames in Crash Applications

2007-04-16
2007-01-0981
Hydroformed components are replacing stamped parts in automotive frames and front end and roof structures to improve the crash performance of vehicles. Due to the increasing application of hydroformed components, a better understanding of the crash behavior of these parts is necessary to improve the correlation between full-vehicle crash tests and FEM analysis. Accurately predicting the performance of hydroformed components will reduce the amount of physical crash testing necessary to develop the new components and new vehicles as well as reduce cycle time. Virgin material properties are commonly used in FEM analysis of hydroformed components, which leads to erroneous prediction of the full-vehicle crash response. Changes in gauge and material properties during the hydroforming process are intuitive and can be reasonably predicted by using forming simulations. The effects of the forming process have been investigated in the FEA models that are created for crash analyses.
Technical Paper

Macroscopic Constitutive Behaviors of Aluminum Honeycombs Under Dynamic Inclined Loads

2007-04-16
2007-01-0979
Macroscopic constitutive behaviors of aluminum 5052-H38 honeycombs under dynamic inclined loads with respect to the out-of-plane direction are investigated by experiments. The results of the dynamic crush tests indicate that as the impact velocity increases, the normal crush strength increases and the shear strength remains nearly the same for a fixed ratio of the normal to shear displacement rate. The experimental results suggest that the macroscopic yield surface of the honeycomb specimens as a function of the impact velocity under the given dynamic inclined loads is not governed by the isotropic hardening rule of the classical plasticity theory. As the impact velocity increases, the shape of the macroscopic yield surface changes, or more specifically, the curvature of the yield surface increases near the pure compression state.
X